Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulse...Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD.In particular,Rabi error and detuning are primary systemic errors arising from finite pulse duration,incorrect time control,and frequency instability.Here,we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors.By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 orπ,our protocol can significantly reduce the influences of Rabi error and detuning.Our protocol is general and can be combined with the most existing DD sequences such as universal DD,knill DD,XY,etc.As an example,we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals.Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences,which can be applicable for various quantum sensing scenarios.展开更多
We propose a near-field thermophotovoltaic system utilizing magnetic Weyl semimetals,which exhibit a distinct gyrotropic effect originating from their intrinsic axion field.Critically,we demonstrate that intentional b...We propose a near-field thermophotovoltaic system utilizing magnetic Weyl semimetals,which exhibit a distinct gyrotropic effect originating from their intrinsic axion field.Critically,we demonstrate that intentional band dislocation,achieved by layer-specific tuning of the chemical potential,significantly enhances the energyconversion efficiency.This effect arises from the formation of quasi-flat bands in momentum space,which broaden the spectral heat flux and amplify photon tunneling above the bandgap.At optimized chemical potential mismatches,the system achieves a 65%Carnot efficiency and a power density of 7×10^(4)W·m^(-2),surpassing symmetric configurations by 7%.The optimization of the Weyl semimetals thickness further demonstrates a clear tuning window where both the output power and energy-conversion efficiency are significantly improved.These results establish chemical-potential engineering toward high-efficiency near-field thermophotovoltaics for waste heat recovery and infrared energy applications.展开更多
A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum nondemolition measurement(QND)in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplif...A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum nondemolition measurement(QND)in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplifier(OPA).With the help of special drive,the system can be simplified as the typical type of QND for force sensing,so that the backaction noise can be evaded to surpass the standard quantum limit.Besides,the added noise can be suppressed owing to the modified optical susceptibility resulting from the OPA.By introducing two oscillators coupling with two charged bodies respectively,the signal can be enhanced with the nonlinearity caused by Coulomb interaction,while the noise presents an exponential decrease.Moreover,considering the homodyne detection effect,the range of system parameters and frequency bands will be broadened.The present investigation may provide a route toward simultaneously evading backaction noise,reducing the mechanical thermal noise,and enhancing the external signal,which can be an alternative design for sensitive devices.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for m...Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well.展开更多
[Objective] The research aimed to screen out optimum RAPD reaction system on genomic DNA of Agrocybe chaxingu Huang.[Method] The single factor experiment was adopted to select the required Mg2+ concentration, template...[Objective] The research aimed to screen out optimum RAPD reaction system on genomic DNA of Agrocybe chaxingu Huang.[Method] The single factor experiment was adopted to select the required Mg2+ concentration, template DNA concentration,primer concentration,dNTPs concentration,Taq enzyme concentration and anneal temperature initially.[Result] The optimum reaction system for RAPD amplification of Agrocybe chaxingu Huang was listed as follows:2.5 μl Buffer, 2 mmol/L Mg2+, 75 ng DNA, 0.5 μmol/L primer, 150 μmol/L dNTPs and 2.0 Taq enzyme.The reaction process was also listed as follows: denaturation for 5 min at 92 ℃,35 cycles(1 min at 92 ℃, 1 min for 35.5 ℃ and elongation for 2 min at 72 ℃),10 min at 72 ℃.[Conclusion] The research provided reference for conducting RAPD analysis of and studying genetic relationship and genetic diversity of Agrocybe chaxingu Huang.展开更多
Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding shou...Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.展开更多
The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band an...The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.展开更多
A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving ...A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving 50 ft transmission lines and a pair of feedback networks for offset cancellation. At a positive supply voltage of 2 V and a negative supply voltage of - 2V, the power dissipation is about 280 mW. The small-signal gain is higher than 46 dB and the input dynamic range is about 40 dB with a constant single-ended output voltage swing of 400 mV. Satisfactory eye-diagrams are obtained at the bit rate of 12 Gbit/s limited by the test set-up. The chip area is 1.15 mm ×0.7 mm.展开更多
Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utiliz...Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utilizing a U-shaped microstrip meander-line slow-wave structure(SWS).High-frequency characteristics are analyzed through simulation and cold tests.The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters.Particle-in-cell(PIC)simulations with an 18.8 kV,0.1 A electron beam predict an output power of 18 W with a gain of 14 dB.Experimental measurements of S-parameters are conducted using three substrate materials:Rogers 5880,quartz,and diamond.The quartz substrate exhibits the closest agreement with simulation results.The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.展开更多
In this paper,we have mainly studied the amplification effect of thulium-doped fiber amplifier(TDFA)at 2µm,and compared different amplification effects of the one-stage TDFA,two-stage TDFA and three-stage TDFA at...In this paper,we have mainly studied the amplification effect of thulium-doped fiber amplifier(TDFA)at 2µm,and compared different amplification effects of the one-stage TDFA,two-stage TDFA and three-stage TDFA at proper conditions.The simulation results show that within the effective threshold,with the increase of the pump power,the amplification effect of the optical amplifier improves,but the signal-to-noise ratio(SNR)of the output signal decreases,in order to balance the gain benefit and noise coefficient of TDFA,we can use a multi-stage amplification structure.Three-stage backward-pumped series 2.06µm TDFA,whose slope efficiency can achieve 11%at certain condition.At 5.2 W pump power,the output signal gain of 2µm TDFA exceeds 20 dB,and the output SNR is higher than 32 dB.In addition,the effect of the optimum length of thulium-doped fiber on the amplification performance of 2µm TDFA is also analyzed in this paper.These simulation results are important for the experiment and design of 2µm TDFA.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve ...In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve a wide bandwidth matching range and good gain flatness.A second stage with a Darlington pair is used to increase the overall gain of the amplifier,while the gain of the first stage is reduced to reduce the overall noise.The amplifier is based on a 0.25μm SiGe BiCMOS process,and thanks to the inductorless circuit structure,the core circuit area is only 0.03 mm^(2).Test results show that the lowest noise figure(NF)in the operating band is 1.99 dB,the power gain reaches 29.7 dB,the S_(11)and S_(22)are less than-10 dB,the S_(12)is less than-30 dB,the IIP3 is 0.81dBm,and the OP_(1dB)is 10.27 dBm.The operating current is 31.18 mA at 3.8 V supply.展开更多
CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significa...CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices.展开更多
Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves....Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.展开更多
In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation dat...In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double- frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong off shore wind periods, with a broad frequency band distributed in the range of 0.2-1 Hz;LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplifi cation eff ect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.展开更多
In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different ph...In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different phase profiles,can be transformed into each other.In principle,the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers.How to analyze and characterize the differential mode-bases gain(DMBG)is important,but still an issue.We build,for the first time to our knowledge,a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation.Using the model of the two mode bases,analysis of local particle number distribution and detailed description of the local gain difference are realized,and the overall gain difference between the two mode bases is obtained.By building an amplifier system based on mode phase profile controlling,the gain of two mode bases is characterized experimentally.The measured DMBG is∼0.8 dB in the second-order mode,which is consistent with the simulation result.This result provides a potential way to reduce the mode gain difference in the FM-EDF,which is important in improving the performance of the SDM communication system.展开更多
Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithiu...Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability.展开更多
The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simu...The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simultaneous fluctuations that are superimposed on the amplitude and phase of the cavity electric field, as well as the atomic population inversion. The correlation function of these fluctuations yields the amplitude, phase, and spontaneous emission noise fluxes, respectively. The amplitude and spontaneous emission noise fluxes exhibit the Lorentzian profiles in both the below-threshold state and the injection-locking region of the above-threshold state. While noise is typically viewed negatively in science and engineering, this research highlights its positive role as a valuable tool for measuring the optical properties of a laser amplifier. For instance, the degree of first-order temporal coherence(DFOTC) is derived by taking the Fourier transform of the amplitude noise flux. The damping rate of DFOTC is associated with the coherence time of the light emitted by the laser amplifier. Furthermore, the uncertainty relation between noise bandwidth and coherence time is confirmed. Finally, it is demonstrated that the input pumping noise flux, together with the output amplitude and spontaneous emission noise fluxes, satisfy the principle of flux conservation.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.92476201,12025509,12305022,and 12475029)+1 种基金the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)Guangdong Provincial Quantum Science Strategic Initiative Fund(Grant Nos.GDZX2305006 and GDZX2405002)。
文摘Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD.In particular,Rabi error and detuning are primary systemic errors arising from finite pulse duration,incorrect time control,and frequency instability.Here,we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors.By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 orπ,our protocol can significantly reduce the influences of Rabi error and detuning.Our protocol is general and can be combined with the most existing DD sequences such as universal DD,knill DD,XY,etc.As an example,we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals.Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences,which can be applicable for various quantum sensing scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.12125504 and 12305050)the National Key R&D Program of China(Grant No.2022YFA1404400)+2 种基金the Hundred Talents Program of the Chinese Academy of Sciences,the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJB140017)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.Ammt2023B-1)the Guangdong University of Technology SPOE Seed Foundation(Grant No.SF2024111502).
文摘We propose a near-field thermophotovoltaic system utilizing magnetic Weyl semimetals,which exhibit a distinct gyrotropic effect originating from their intrinsic axion field.Critically,we demonstrate that intentional band dislocation,achieved by layer-specific tuning of the chemical potential,significantly enhances the energyconversion efficiency.This effect arises from the formation of quasi-flat bands in momentum space,which broaden the spectral heat flux and amplify photon tunneling above the bandgap.At optimized chemical potential mismatches,the system achieves a 65%Carnot efficiency and a power density of 7×10^(4)W·m^(-2),surpassing symmetric configurations by 7%.The optimization of the Weyl semimetals thickness further demonstrates a clear tuning window where both the output power and energy-conversion efficiency are significantly improved.These results establish chemical-potential engineering toward high-efficiency near-field thermophotovoltaics for waste heat recovery and infrared energy applications.
基金supported by the National Key Research and Development Program of China Grant No.2021YFA1400700National Natural Science Foundation of China Grant No.11974125。
文摘A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum nondemolition measurement(QND)in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplifier(OPA).With the help of special drive,the system can be simplified as the typical type of QND for force sensing,so that the backaction noise can be evaded to surpass the standard quantum limit.Besides,the added noise can be suppressed owing to the modified optical susceptibility resulting from the OPA.By introducing two oscillators coupling with two charged bodies respectively,the signal can be enhanced with the nonlinearity caused by Coulomb interaction,while the noise presents an exponential decrease.Moreover,considering the homodyne detection effect,the range of system parameters and frequency bands will be broadened.The present investigation may provide a route toward simultaneously evading backaction noise,reducing the mechanical thermal noise,and enhancing the external signal,which can be an alternative design for sensitive devices.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
文摘Nonlinear distortion is one of key limiting factors in radio over fiber (RoF) transmission systems. To suppress the nonlinear distortion, digital pre-distortion (DPD) has been investigated considerably. However, for multi-band signals, DPD becomes very complex, which limits the applications. To reduce the complexity, many simplified DPDs have been proposed. In this work, a new multidimensional DPD is proposed, in which in-band and out-of-band distortion are separated and the out-of-band distortion is evaluated by sum and differences of all input signals instead of all individual input signals, thus complexity is reduced. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each bandwidth of 200 MHz in simulations and a 5-band 20 MHz 64-QAM OFDM signal in experiments are used to validate the pro-posed DPD. The validation is illustrated in the means of power spectrum, AM/AM and AM/PM distortion, and error vector magnitude (EVM) of the received signal constellations. The average EVM improvement by simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average EVM improvement by experiments for 5-band signals is 8.1 dB. Considering the ten times of bandwidth difference, experiments and simulation agree well.
文摘[Objective] The research aimed to screen out optimum RAPD reaction system on genomic DNA of Agrocybe chaxingu Huang.[Method] The single factor experiment was adopted to select the required Mg2+ concentration, template DNA concentration,primer concentration,dNTPs concentration,Taq enzyme concentration and anneal temperature initially.[Result] The optimum reaction system for RAPD amplification of Agrocybe chaxingu Huang was listed as follows:2.5 μl Buffer, 2 mmol/L Mg2+, 75 ng DNA, 0.5 μmol/L primer, 150 μmol/L dNTPs and 2.0 Taq enzyme.The reaction process was also listed as follows: denaturation for 5 min at 92 ℃,35 cycles(1 min at 92 ℃, 1 min for 35.5 ℃ and elongation for 2 min at 72 ℃),10 min at 72 ℃.[Conclusion] The research provided reference for conducting RAPD analysis of and studying genetic relationship and genetic diversity of Agrocybe chaxingu Huang.
文摘Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.
基金The National Natural Science Foundation of China (No.60702027,60921063)the National Basic Research Program of China(973 Program)(No.2010CB327400)the National Science and Technology Major Project of Ministry of Science and Technology of China(No.2010ZX03007-001-01,2011ZX03004-001)
文摘The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.
文摘A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving 50 ft transmission lines and a pair of feedback networks for offset cancellation. At a positive supply voltage of 2 V and a negative supply voltage of - 2V, the power dissipation is about 280 mW. The small-signal gain is higher than 46 dB and the input dynamic range is about 40 dB with a constant single-ended output voltage swing of 400 mV. Satisfactory eye-diagrams are obtained at the bit rate of 12 Gbit/s limited by the test set-up. The chip area is 1.15 mm ×0.7 mm.
基金National Natural Science Foundation of China(62471097,62471115,62471101)Natural Science Foundation of Sichuan Province(2025ZNSFSC0537)Stable Support Porject of 12th Research Institute of China Electronics Technology Group Corporation。
文摘Microstrip traveling wave tubes(TWTs)have garnered significant attention due to their potential applications in communication,defense,and industrial systems.This paper presents a compact W-band dual-channel TWT,utilizing a U-shaped microstrip meander-line slow-wave structure(SWS).High-frequency characteristics are analyzed through simulation and cold tests.The results demonstrate that adjusting structural parameters effectively optimizes the S-parameters.Particle-in-cell(PIC)simulations with an 18.8 kV,0.1 A electron beam predict an output power of 18 W with a gain of 14 dB.Experimental measurements of S-parameters are conducted using three substrate materials:Rogers 5880,quartz,and diamond.The quartz substrate exhibits the closest agreement with simulation results.The results advance the development of the microstrip-based TWTs for high-data-rate communication systems.
基金supported by the Natural Science Foundation of Guangdong Province(Nos.2023A1515010093)the Shenzhen Fundamental Research Program(Nos.JCYJ20220809170611004,20231121110828001 and 20231121113641002)the Taipei University of Technology-Shenzhen University Joint Research Program(No.2024001).
文摘In this paper,we have mainly studied the amplification effect of thulium-doped fiber amplifier(TDFA)at 2µm,and compared different amplification effects of the one-stage TDFA,two-stage TDFA and three-stage TDFA at proper conditions.The simulation results show that within the effective threshold,with the increase of the pump power,the amplification effect of the optical amplifier improves,but the signal-to-noise ratio(SNR)of the output signal decreases,in order to balance the gain benefit and noise coefficient of TDFA,we can use a multi-stage amplification structure.Three-stage backward-pumped series 2.06µm TDFA,whose slope efficiency can achieve 11%at certain condition.At 5.2 W pump power,the output signal gain of 2µm TDFA exceeds 20 dB,and the output SNR is higher than 32 dB.In addition,the effect of the optimum length of thulium-doped fiber on the amplification performance of 2µm TDFA is also analyzed in this paper.These simulation results are important for the experiment and design of 2µm TDFA.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.
基金funded by the Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20220818101001003)。
文摘In this paper,a high-gain inductorless LNA(low-noise amplifier)compatible with multiple communication protocols from 0.1 to 5.1 GHz is proposed.A composite resistor-capacitor feedback structure is employed to achieve a wide bandwidth matching range and good gain flatness.A second stage with a Darlington pair is used to increase the overall gain of the amplifier,while the gain of the first stage is reduced to reduce the overall noise.The amplifier is based on a 0.25μm SiGe BiCMOS process,and thanks to the inductorless circuit structure,the core circuit area is only 0.03 mm^(2).Test results show that the lowest noise figure(NF)in the operating band is 1.99 dB,the power gain reaches 29.7 dB,the S_(11)and S_(22)are less than-10 dB,the S_(12)is less than-30 dB,the IIP3 is 0.81dBm,and the OP_(1dB)is 10.27 dBm.The operating current is 31.18 mA at 3.8 V supply.
基金supported by the National Natural Science Foundation of China(Grant No.62174079)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2404006)Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.JCYJ20220530113015035)。
文摘CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices.
基金financial supports from National Natural Science Foundation of China(No.61905051)Natural Science Foundation of Heilongjiang Province(No.LH2020F027).
文摘Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing.
基金supported by Earthquake Science and Technology Spark Program of China Earthquake Administration (No. XH20006Y)Local Standards Formulation and Revision Program of Hebei Province (No. FW202154)+1 种基金Earthquake Science and Technology Spark Program of Hebei Earthquake Agency (No. DZ2024112100002)2023 Seismological Data Sharing Project of China Earthquake Networks Center (Dataset Project)。
文摘In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double- frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong off shore wind periods, with a broad frequency band distributed in the range of 0.2-1 Hz;LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplifi cation eff ect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0706300)the National Natural Science Foundation of China(Grant Nos.U22B2010,62035018,and U2001601)+1 种基金the Program of Marine Economy Development Special Fund(Six Marine Industries)under the Department of Natural Resources of Guangdong Province(Grant No.GDNRC[2024]16)the project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP231).
文摘In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different phase profiles,can be transformed into each other.In principle,the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers.How to analyze and characterize the differential mode-bases gain(DMBG)is important,but still an issue.We build,for the first time to our knowledge,a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation.Using the model of the two mode bases,analysis of local particle number distribution and detailed description of the local gain difference are realized,and the overall gain difference between the two mode bases is obtained.By building an amplifier system based on mode phase profile controlling,the gain of two mode bases is characterized experimentally.The measured DMBG is∼0.8 dB in the second-order mode,which is consistent with the simulation result.This result provides a potential way to reduce the mode gain difference in the FM-EDF,which is important in improving the performance of the SDM communication system.
基金financial supports from National Key R&D Program of China(Grant No.2022YFA1205100,2022YFA1404600)National Natural Science Foundation of China(Grant Nos.12192251,12334014,12474325,12134001,12304418,12474378,12274133,12174107,12174113,12274130)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(No.2023nmc005).
文摘Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability.
文摘The noise feature of a single-mode class-A laser amplifier is investigated by solving the Maxwell–Bloch equations of motion in the presence of the fluctuation force of cavity Langevin.The aim is to calculate the simultaneous fluctuations that are superimposed on the amplitude and phase of the cavity electric field, as well as the atomic population inversion. The correlation function of these fluctuations yields the amplitude, phase, and spontaneous emission noise fluxes, respectively. The amplitude and spontaneous emission noise fluxes exhibit the Lorentzian profiles in both the below-threshold state and the injection-locking region of the above-threshold state. While noise is typically viewed negatively in science and engineering, this research highlights its positive role as a valuable tool for measuring the optical properties of a laser amplifier. For instance, the degree of first-order temporal coherence(DFOTC) is derived by taking the Fourier transform of the amplitude noise flux. The damping rate of DFOTC is associated with the coherence time of the light emitted by the laser amplifier. Furthermore, the uncertainty relation between noise bandwidth and coherence time is confirmed. Finally, it is demonstrated that the input pumping noise flux, together with the output amplitude and spontaneous emission noise fluxes, satisfy the principle of flux conservation.