Ambient logics have been proposed to describe properties for mobile agentswhich may evolve over time as well as space. This paper takes a predicate-based approach toextending an ambient logic with recursion, yielding ...Ambient logics have been proposed to describe properties for mobile agentswhich may evolve over time as well as space. This paper takes a predicate-based approach toextending an ambient logic with recursion, yielding a predicate μ-calculus in which fixpointformulas are formed using predicate variables. An algorithm is developed for model checkingfinite-control mobile ambients against formulas of the logic, providing the first decidabilityresult for model checking a spatial logic with recursion.展开更多
Sound is considered an important aspect of an ecosystem and acoustic methods have emerged as effective tools for ecosystems research.Xincun Lagoon,Hainan Island,is an important ecosystem characterized by dense seagras...Sound is considered an important aspect of an ecosystem and acoustic methods have emerged as effective tools for ecosystems research.Xincun Lagoon,Hainan Island,is an important ecosystem characterized by dense seagrass,which has been declining due to increased human activities,raising great concerns.Previous studies have identified various threats to seagrass,including heavy metal pollution,poor quality water,and so on.In this study,we investigate sources and levels of noise in seagrass beds and attempt to point out potential threats from noise pollution.A line array of six hydrophones was deployed over a period of seven days,from January 15 to January 21,2024.The recordings captured various sounds from marine life,human activities,and natural processes.Biological sounds,such as fish sounds and whale calls,were the most prevalent.Low-frequency noise from wind and tide were often recorded.Xincun Bay hosts more than 1500 fishing vessels;however,due to bad weather conditions that kept most vessels docked during the recording period,only one segment of boat noise was recorded;it lasted for 7 minutes,exhibiting strong energy over a broad frequency band.This event underscores the necessity of long-term monitoring of noise to identify and evaluate not only boat noise but other noise sources,especially ones that are intermittent but strong,that were not encountered during the limited period of observation on which this report is based.展开更多
The maximum rise-height,zero-buoyancy height,thickness of the spreading layer,minimum dilution and the height of the lower edge of the spreading layer are the important characteristic quantities of buoyant jets in str...The maximum rise-height,zero-buoyancy height,thickness of the spreading layer,minimum dilution and the height of the lower edge of the spreading layer are the important characteristic quantities of buoyant jets in stratified ambients.The scaling law is derived by the dimensional analysis of the influence factor on a buoyant jet.The characteristic quantities are found to converge to a single line under the unified scaling law.The correlation of the predicted results and experimental data is given.展开更多
Existing evidence suggests residential greenness is beneficial to human,while no research to date explored the associations of greenness with age-related macular degeneration(AMD).To evaluate the association of greenn...Existing evidence suggests residential greenness is beneficial to human,while no research to date explored the associations of greenness with age-related macular degeneration(AMD).To evaluate the association of greenness with AMD,modification and mediation effect of air pollution,we conducted this prospective study.We con-structed weighted quantile sum(WQS)index as co-exposure to nitrogen oxides(NO_(x)),particulate matter<2.5μm(PM_(2.5)),particulate matter<10μm(PM10).Stratified Cox regression models were applied to test the effect of exposure.Effect modification of air pollution was assessed.Stratified Cox models through the indirect method and Aalen additive risk models were used in mediation analysis.Over median follow-up of 11.67 years,4596 AMD events were ascertained.Hazard ratios(HRs)and 95%confidence intervals(95%CIs)of incident AMD for pollution per interquartile range(IQR)increment were 1.10(1.04–1.16)for nitrogen dioxide(NO_(2)),1.09(1.03–1.15)for NO_(x),1.14(1.05–1.24)for PM_(2.5),1.13(1.05–1.21)for PM10.The HR(95%CI)of AMD associated with greenness 1000 m buffer per IQR increment was 0.91(0.86–0.97),300 m buffer was 0.94(0.89–0.99).The as-sociation between greenness 1000 m and AMD was 28.59%,44.77%,35.59%,32.31%and 27.08%mediated by the decreased WQS index,NO_(2),NO_(x),PM_(2.5) and PM10,respectively.Increased greenness was associated with lower AMD incidence,and air pollution partly mediate it,which implies that interventions aimed at improving air quality and increasing greenness could have a dual benefit in mitigating AMD risk.展开更多
Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and ...Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and unstable,making high-quality single-crystal growth,characterization,and measurements difficult,and most do not exhibit superconductivity at ambient pressure.In contrast,La_(3) In stands out for its ambient-pressure superconductivity(T_(C)∼9.4 K)and the availability of high-quality single crystals.Here,we investigate its low-energy electronic structure using angle-resolved photoemission spectroscopy and first-principles calculations.The bands near the Fermi energy(E_(F))are mainly derived from La 5d and In 5p orbitals.A saddle point is directly observed at the Brillouin zone(BZ)boundary,while a three-dimensional Van Hove singularity crosses E_(F) at the BZ corner.First-principles calculations further reveal topological Dirac surface states within the bulk energy gap above E_(F).The coexistence of a high density of states and in-gap topological surface states near𝐸F suggests that La3In offers a promising platform for tuning superconductivity and exploring possible topological superconducting phases through doping or external pressure.展开更多
Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simu...Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simultaneous observations of numerous stations for extensive coverage.To conduct a comprehensive karst feature investigation with limited stations,we designed a new synchronous-asyn-chronous observation system that facilitates dense array observations.We conducted two rounds of asynchronous observations,each lasting approximately 24 h,in combination with synchronous backbone stations.We achieved wide-ranging coverage of the study area utilizing 197 nodal receivers,with an average station spacing of 7 m.The beamforming results revealed distinct variations in the noise source distributions between day and night.We estimated the source strength in the stationary phase zone and used a weighting scheme for stacking the cross-correlation functions(C ^(1) functions)to suppress the influ-ence of nonuniform noise source distributions.The weights were derived from the similarity coefficients between multicomponent C^(1)functions related to Rayleigh waves.We employed the cross-correlation of C ^(1) functions(C^(2)methods)to obtain the empirical Green’s functions between asynchronous stations.To eliminate artifacts in C ^(2) functions from higher-mode surface waves in C^(1)functions,we filtered the C^(1)functions on the basis of different particle motions linked to multimode Rayleigh waves.The dispersion measurements of Rayleigh waves obtained from both the C^(1)and C^(2)functions were utilized in surface wave tomography.The inverted three-dimensional(3D)shear-wave(S-wave)velocity model reveals two significant low-velocity zones at depths ranging from 40 to 60 m,which align well with the karst caves found in the drilling data.The method of short-term synchronous-asynchronous ambient noise tomography shows promise as a cost-effective and efficient approach for urban geohazard investigations.展开更多
This study investigates the relationships between exposures to ambient air pollution—specifically particulate matter 2.5 (PM_(2.5)) and its metabolites—and the risk of depression.Nonlinear and linear regression,Baye...This study investigates the relationships between exposures to ambient air pollution—specifically particulate matter 2.5 (PM_(2.5)) and its metabolites—and the risk of depression.Nonlinear and linear regression,Bayesian kernel machine regression,and toxicogenomic analysis were key approaches.PM_(2.5)exposure was positively associated with the risk of developing depression,whereas phenylglyoxylic acid exposure was negatively associated with depression risk.We found a significant overall relationship between ambient air pollution and depression,particularly at the 55th and 60th percentiles.Although statistical significance was not reached at the 65th percentile,there was a noticeable upward trend,indicating a potential association.Interestingly,no significant connection was found between a combination of metabolites from ambient air pollution and depression.PM_(2.5)and phenylglyoxylic acid emerged as the most influential compounds in the models,respectively.PM_(2.5)exposure altered the expression of 42 specific targets associated with depression,especially POMC,SCL6A4,IL6,and SOD2.The study identified specific pathways related to insulin secretion,energy metabolism,blood circulation,tube diameter,and maintenance of blood vessel diameter,as well as key molecular mechanisms involving hsa-miR-124-3p,hsa-miR-155-5p,hsa-miR-16-5p,and SP1.These mechanisms were found to underlie the etiology of depression associated with PM_(2.5)exposure.In conclusions,PM_(2.5)and phenylglyoxylic acid were found to be associated with depression.Further work is needed to gain insight into the molecular mechanisms by which these chemicals affect depression,especially pathways related to insulin secretion and blood circulation.展开更多
The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structur...The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas.展开更多
The Anninghe–Zemuhe Fault and the Xiaojiang Fault are critical active faults along the middle-eastern boundary of the South Chuan–Dian Block. Many researchers have identified these faults as potential strong-earthqu...The Anninghe–Zemuhe Fault and the Xiaojiang Fault are critical active faults along the middle-eastern boundary of the South Chuan–Dian Block. Many researchers have identified these faults as potential strong-earthquake risk zones. In this study, we leveraged a dense seismic array to investigate the high-resolution shallow crust shear wave velocity(Vs) structure beneath the junction of the Zemuhe Fault Zone and the Xiaojiang Fault Zone, one of the most complex parts of the eastern boundary of the South Chuan–Dian Block. We analyzed the distribution of microseismic events detected between November 2022 and February 2023 based on the fine-scale Vs model obtained. The microseismicity in the study region was clustered into three groups, all spatially related to major faults in this region. These microseismic events indicate near-vertical fault planes, consistent with the fault geometry revealed by other researchers.Moreover, these microseismic events are influenced by the impoundment of the downstream Baihetan Reservoir and the complex tectonic stress near the junction of the Zemuhe Fault Zone and the Xiaojiang Fault Zone. The depths of these microseismic events are shallower in the junction zone, whereas moving south along the Xiaojiang Fault Zone, the microseismic events become deeper.Additionally, we compared our fine-scale local Vs model with velocity models obtained by other researchers and found that our model offers greater detail in characterizing subsurface heterogeneity while demonstrating improved reliability in delineating fault systems.展开更多
The Pamir Plateau,at the northwestern margin of the Tibetan Plateau,is a key region for investigating continental collision and plateau uplifting.To probe its deep structure,we collected seismic data from 263 stations...The Pamir Plateau,at the northwestern margin of the Tibetan Plateau,is a key region for investigating continental collision and plateau uplifting.To probe its deep structure,we collected seismic data from 263 stations across 11 research projects.We applied cross-correlation to noise data and extracted surface wave dispersion data from cross-correlation functions.The extracted dispersion data were subsequently inverted using a 3-D transdimensional Bayesian inversion method(rj-3 DMcMC).The inversion result reveals several crustal low-velocity zones(LVZs).Their formation is likely related to crustal thickening,the exposure of gneiss domes,and thicker sedimentary sequences compared to surrounding areas.In the lower crust and upper mantle,the LVZs in southern Pamir and southeastern Karakoram evolve into high-velocity zones,which expand northeastward with increasing depth.This suggests northward underthrusting of the Indian Plate.We also analyzed the Moho using both the standard deviation of S-wave velocity and the S-wave velocity structure.Results show that significant variations in velocity standard deviation reliably delineate the Moho interface.展开更多
High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address thes...High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address these above issues,solid-state Li–air batteries have been widely developed.However,many commonly-used solid electrolytes generally face huge interface impedance inLi–air cells and also showpoor stability towards ambient air/Li electrodes.Herein,we fabricate a differentiating surface-regulated ceramic-based composite electrolyte(DSCCE)by constructing disparately LiI-containing polymethyl methacrylate(PMMA)coating and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)layer on both sides of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_(4))_(3)(LAGP).The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system.Additionally,the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover,Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniformand compact composite framework.As a result,the DSCCE-based Li–air batteries possess high capacity/low voltage polarization(11,836mAh g^(-1)/1.45Vunder 500mAg^(-1)),good rate performance(capacity ratio under 1000mAg^(-1)/250mAg^(-1) is 68.2%)and longterm stable cell operation(~300 cycles at 750 mA g^(-1) with 750 mAh g^(-1))in ambient air.展开更多
Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed...Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed that the growth rate,spore production and virulence of C.vitis significantly declined in alkaline pH,as well as the suppressive effect on secretion of hydrolytic enzymes.Transcriptomic and metabolomic analyses were used to investigate the responses of C.vitis to acidic(pH 5),neutral(pH 7)and alkaline environments(pH 9).We identified 728,1,780 and 3,386 differentially expressed genes(DEGs)at pH 5,pH 7 and pH 9,when compared with the host pH(pH 3),and 2,122 differently expressed metabolites(DEMs)in negative and positive ion mode.Most DEGs were involved in carbohydrate metabolic process,transmembrane transport,tricarboxylic acid cycle,peptide metabolic process,amide biosynthetic process,and organic acid metabolic process.In addition,metabolomic analysis revealed ABC transporters,indole alkaloid biosynthesis,diterpenoid biosynthesis,and carotenoid biosynthesis pathways in response to the pH change.Furthermore,we found that the aspartate synthesis metabolic route associated with the TCA cycle is a key limiting factor for the growth and development of C.vitis in alkaline environments,and aspartate supplementation enables C.vitis to grow in alkaline environments.Plant cell wall-degrading enzymes(PCWDEs)could contribute to the pathogenicity,when C.vitis infected at pH 3.Importantly,aflatrem biosynthesis in acidic environment might contribute to the virulence of C.vitis and has a risk of causing human health problems due to its acute neurotoxic effects.展开更多
Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In...Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In this context,laser-induced tuning of charge carriers in graphene facilitates the exploration of graphene's properties in relation to its surroundings and enables laser-assisted functionalization. This has the potential to advance optoelectronic devices that utilize graphene on transparent dielectric substrates, such as Al_(2)O_(3). In this work, laser power(PL) in Raman spectroscopy is used as a convenient contactless tool to manipulate and control unintentional carrier concentration and Fermi level position(EF) in graphene/α-Al_(2)O_(3)(G/Al_(2)O_(3)) under ambient conditions. Samples are annealed at 400℃ for two hours in an(Ar + H_(2)) atmosphere to remove any chemical residues. Analysis of the peak frequency(ω) and full width at half maximum(Γ) of the G and 2D bands show that G/Al_(2)O_(3) layers initially exhibit p-type doping, with EF located at ~100 me V below its Dirac charge-neutral point(DCNP). Increasing P_(L) results in effective carrier manipulation and raises E_F above DCNP. No significant internal stress is produced due to P_(L), as inferred from the strain-sensitive G^(*) band of graphene. Raman analysis of three successive cycles reveals hysteretic behavior from cycle to cycle, which is commonly reported to be limited by the type and density of the existing unintentional doping. Because of the ubiquitous nature of unintentional doping in graphene,manipulating it using contactless laser power to realize the desired graphene properties would be one of the best available practical approaches.展开更多
The advancement of intelligent mining in open-pit operations has imposed higher demands on geological transparency,aiming to provide a robust foundation for intelligent drilling and charging.In this study,a linear arr...The advancement of intelligent mining in open-pit operations has imposed higher demands on geological transparency,aiming to provide a robust foundation for intelligent drilling and charging.In this study,a linear array of 120 nodal seismometers was deployed along the surfaces of the C8 and C9 platforms at Fenghuang Mountain to investigate cavities within the rock mass and prevent improper intelligent charging.The seismometers were 1 m apart along measurement lines,with a 2-m spacing between lines,and the monitoring time for each line was set at 2 h.This deployment was paired with spatial autocorrelation and station autocorrelation to analyze ambient noise seismic data and image the velocity and structure within the rock mass.The results demonstrate that the locations and sizes of cavities or loose structures can be accurately identified at the prepared excavation site.Compared with traditional geological exploration methods for openpit mines,the approach in this study off ers higher accuracy,greater efficiency,reduced labor intensity,and insensitivity to water conditions.Ambient noise seismic imaging for detecting adverse geological conditions in open-pit mines provides critical insights and references for intelligent mining advancements.展开更多
Ambient noise tomography is an established technique in seismology,where calculating single-or ninecomponent noise cross-correlation functions(NCFs)is a fundamental first step.In this study,we introduced a novel CPU-G...Ambient noise tomography is an established technique in seismology,where calculating single-or ninecomponent noise cross-correlation functions(NCFs)is a fundamental first step.In this study,we introduced a novel CPU-GPU heterogeneous computing framework designed to significantly enhance the efficiency of computing 9-component NCFs from seismic ambient noise data.This framework not only accelerated the computational process by leveraging the Compute Unified Device Architecture(CUDA)but also improved the signal-to-noise ratio(SNR)through innovative stacking techniques,such as time-frequency domain phaseweighted stacking(tf-PWS).We validated the program using multiple datasets,confirming its superior computation speed,improved reliability,and higher signal-to-noise ratios for NCFs.Our comprehensive study provides detailed insights into optimizing the computational processes for noise cross-correlation functions,thereby enhancing the precision and efficiency of ambient noise imaging.展开更多
Neural stem cells(NSCs)play a fundamental role in generating diverse neuronal populations that contribute to the formation of intricate neural circuitry.Disturbances arising from intrinsic or extrinsic factors can alt...Neural stem cells(NSCs)play a fundamental role in generating diverse neuronal populations that contribute to the formation of intricate neural circuitry.Disturbances arising from intrinsic or extrinsic factors can alter the developmental behavior of NSCs and disrupt nervous system homeostasis.While intrinsic regulatory mechanisms have been elucidated extensively in invertebrate or vertebrate models,the regulatory mechanisms underlying extrinsic cues from the cellular environment remain poorly understood.This review synthesized recent research on cellular ambient effects,including the microenvironment,systemic environment and external factors,on NSCs in Drosophila.Key topics include spatial cues,NSC-glia interactions,long-distance regulation by tissues such as the fat body,and the external environmental stressors like irradiation or viral infection.By integrating these findings,this review provides new insights into how extrinsic signals shape NSCs and bridges gaps between foundational research and clinical translation.展开更多
High-pressure synthesis of lutetium hydrides from molecular hydrogen(H_(2))and lutetium(Lu)is systematically investigated using synchrotron X-ray diffraction,Raman spectroscopy,and visual observations.We demonstrate t...High-pressure synthesis of lutetium hydrides from molecular hydrogen(H_(2))and lutetium(Lu)is systematically investigated using synchrotron X-ray diffraction,Raman spectroscopy,and visual observations.We demonstrate that the reaction pathway between H_(2)and Lu invariably follows the sequence Lu→LuH_(2)→LuH_(3)and exhibits a notable time dependence.A comprehensive diagram representing the formation and synthesis of lutetium hydrides as a function of pressure and time is constructed.Our findings indicate that the synthesis can be accelerated by elevated temperature and decelerated by increased pressure.Notably,two critical pressure thresholds at ambient temperature are identified:the synthesis of LuH_(2)from Lu commences at a minimum pressure of~3 GPa,while~28 GPa is the minimum pressure at which LuH_(2)fails to transform into LuH_(3)within a time scale of months.This underscores the significant impact of temporal factors on synthesis,with the reaction completion time increasing sub-linearly with rising pressure.Furthermore,the cubic phase of LuH_(3)can be obtained exclusively through compressing the trigonal LuH_(3)phase at~11.5 GPa.We also demonstrate that the bandgap of LuH_(3)slowly closes under pressure and is noticeably lower than that of LuH_(2).展开更多
BACKGROUND To investigate whether seasonal differences in ambient temperature affect the incidence of early postoperative cognitive dysfunction(POCD)among elderly patients undergoing laparoscopic surgery in tropical r...BACKGROUND To investigate whether seasonal differences in ambient temperature affect the incidence of early postoperative cognitive dysfunction(POCD)among elderly patients undergoing laparoscopic surgery in tropical regions.Additionally,it explored the perioperative risk factors associated with early POCD following abdominal laparoscopic surgery.AIM To investigate the influence of seasonal differences in ambient temperature on POCD of elderly patients METHODS A total of 125 patients aged≥65 years from Hainan Province,China,who underwent laparoscopic surgery under general anesthesia with tracheal intubation,were enrolled. All patients completed the Mini-Mental State Examination one day before surgery and onpostoperative days 1, 3, and 7. A decline of ≥ 2 points from baseline was considered indicative of cognitivedysfunction. Serum levels of S100 calcium binding protein B and neuron-specific enolase were measured usingenzyme-linked immunosorbent assay at three time points: Preoperatively, immediately after extubation, and 24hours postoperatively. Perioperative clinical data were collected to identify potential risk factors for POCD.Propensity score matching (PSM) was performed (1:1, caliper = 0.03), resulting in 41 matched patient pairs betweenwinter and summer groups.RESULTSAfter PSM, baseline characteristics including age, gender, body mass index, education level, comorbidities, andsurgical variables were well balanced between groups. There were no significant differences in the incidence ofPOCD on postoperative days 1, 3, and 7 between patients undergoing laparoscopic surgery in winter vs summer.However, multivariable logistic regression revealed that surgical duration (day 1, P value = 0.049), advanced ageand elevated creatinine (day 3, P value = 0.044, P value = 0.008), and hypoalbuminemia (day 3, P value = 0.042;day7, P value = 0.015) were independently associated with early POCD.CONCLUSIONAmbient temperature differences between winter and summer in tropical regions did not significantly affect theincidence of early POCD in elderly patients undergoing laparoscopic surgery. Nonetheless, age, longer surgicalduration, elevated creatinine, and hypoalbuminemia emerged as key risk factors. These findings underscore theimportance of perioperative optimization to reduce the risk of POCD in elderly patients, regardless of seasonaltemperature variations.展开更多
文摘Ambient logics have been proposed to describe properties for mobile agentswhich may evolve over time as well as space. This paper takes a predicate-based approach toextending an ambient logic with recursion, yielding a predicate μ-calculus in which fixpointformulas are formed using predicate variables. An algorithm is developed for model checkingfinite-control mobile ambients against formulas of the logic, providing the first decidabilityresult for model checking a spatial logic with recursion.
基金supported financially by the Director General’s Scientific Research Fund of Guangzhou Marine Geological Survey(Grant Number:2023GMGSJZJJ00029).
文摘Sound is considered an important aspect of an ecosystem and acoustic methods have emerged as effective tools for ecosystems research.Xincun Lagoon,Hainan Island,is an important ecosystem characterized by dense seagrass,which has been declining due to increased human activities,raising great concerns.Previous studies have identified various threats to seagrass,including heavy metal pollution,poor quality water,and so on.In this study,we investigate sources and levels of noise in seagrass beds and attempt to point out potential threats from noise pollution.A line array of six hydrophones was deployed over a period of seven days,from January 15 to January 21,2024.The recordings captured various sounds from marine life,human activities,and natural processes.Biological sounds,such as fish sounds and whale calls,were the most prevalent.Low-frequency noise from wind and tide were often recorded.Xincun Bay hosts more than 1500 fishing vessels;however,due to bad weather conditions that kept most vessels docked during the recording period,only one segment of boat noise was recorded;it lasted for 7 minutes,exhibiting strong energy over a broad frequency band.This event underscores the necessity of long-term monitoring of noise to identify and evaluate not only boat noise but other noise sources,especially ones that are intermittent but strong,that were not encountered during the limited period of observation on which this report is based.
文摘The maximum rise-height,zero-buoyancy height,thickness of the spreading layer,minimum dilution and the height of the lower edge of the spreading layer are the important characteristic quantities of buoyant jets in stratified ambients.The scaling law is derived by the dimensional analysis of the influence factor on a buoyant jet.The characteristic quantities are found to converge to a single line under the unified scaling law.The correlation of the predicted results and experimental data is given.
基金supported by the High-level Talents Introduction Plan from Central South University(No.502045003)the National Natural Science Foundation of China(No.42277438)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.2024JJ2082)to Fang Xiao,and the Postgraduate Independent Exploration and Innovation Project of Central South University,China(Nos.2024ZZTS0557 and 2023ZZTS0993)。
文摘Existing evidence suggests residential greenness is beneficial to human,while no research to date explored the associations of greenness with age-related macular degeneration(AMD).To evaluate the association of greenness with AMD,modification and mediation effect of air pollution,we conducted this prospective study.We con-structed weighted quantile sum(WQS)index as co-exposure to nitrogen oxides(NO_(x)),particulate matter<2.5μm(PM_(2.5)),particulate matter<10μm(PM10).Stratified Cox regression models were applied to test the effect of exposure.Effect modification of air pollution was assessed.Stratified Cox models through the indirect method and Aalen additive risk models were used in mediation analysis.Over median follow-up of 11.67 years,4596 AMD events were ascertained.Hazard ratios(HRs)and 95%confidence intervals(95%CIs)of incident AMD for pollution per interquartile range(IQR)increment were 1.10(1.04–1.16)for nitrogen dioxide(NO_(2)),1.09(1.03–1.15)for NO_(x),1.14(1.05–1.24)for PM_(2.5),1.13(1.05–1.21)for PM10.The HR(95%CI)of AMD associated with greenness 1000 m buffer per IQR increment was 0.91(0.86–0.97),300 m buffer was 0.94(0.89–0.99).The as-sociation between greenness 1000 m and AMD was 28.59%,44.77%,35.59%,32.31%and 27.08%mediated by the decreased WQS index,NO_(2),NO_(x),PM_(2.5) and PM10,respectively.Increased greenness was associated with lower AMD incidence,and air pollution partly mediate it,which implies that interventions aimed at improving air quality and increasing greenness could have a dual benefit in mitigating AMD risk.
基金supported by the National Natural Science Foundation of China(Grant Nos.12222413,12174443,12274459,and 12404266)the National Key R&D Program of China(Grant Nos.2023YFA1406500,2022YFA1403800,and 2022YFA1403103)+3 种基金the Natural Science Foundation of Shanghai (Grant No.23ZR1482200)the Natural Science Foundation of Ningbo (Grant No.2024J019)the Science Research Project of Hebei Education Department (Grant No.BJ2025060)the funding of Ningbo Yongjiang Talent Program。
文摘Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and unstable,making high-quality single-crystal growth,characterization,and measurements difficult,and most do not exhibit superconductivity at ambient pressure.In contrast,La_(3) In stands out for its ambient-pressure superconductivity(T_(C)∼9.4 K)and the availability of high-quality single crystals.Here,we investigate its low-energy electronic structure using angle-resolved photoemission spectroscopy and first-principles calculations.The bands near the Fermi energy(E_(F))are mainly derived from La 5d and In 5p orbitals.A saddle point is directly observed at the Brillouin zone(BZ)boundary,while a three-dimensional Van Hove singularity crosses E_(F) at the BZ corner.First-principles calculations further reveal topological Dirac surface states within the bulk energy gap above E_(F).The coexistence of a high density of states and in-gap topological surface states near𝐸F suggests that La3In offers a promising platform for tuning superconductivity and exploring possible topological superconducting phases through doping or external pressure.
基金supported by the National Natural Science Foundation of China(41830103)the Project of Nanjing Center of China Geological Survey(DD20190281).
文摘Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simultaneous observations of numerous stations for extensive coverage.To conduct a comprehensive karst feature investigation with limited stations,we designed a new synchronous-asyn-chronous observation system that facilitates dense array observations.We conducted two rounds of asynchronous observations,each lasting approximately 24 h,in combination with synchronous backbone stations.We achieved wide-ranging coverage of the study area utilizing 197 nodal receivers,with an average station spacing of 7 m.The beamforming results revealed distinct variations in the noise source distributions between day and night.We estimated the source strength in the stationary phase zone and used a weighting scheme for stacking the cross-correlation functions(C ^(1) functions)to suppress the influ-ence of nonuniform noise source distributions.The weights were derived from the similarity coefficients between multicomponent C^(1)functions related to Rayleigh waves.We employed the cross-correlation of C ^(1) functions(C^(2)methods)to obtain the empirical Green’s functions between asynchronous stations.To eliminate artifacts in C ^(2) functions from higher-mode surface waves in C^(1)functions,we filtered the C^(1)functions on the basis of different particle motions linked to multimode Rayleigh waves.The dispersion measurements of Rayleigh waves obtained from both the C^(1)and C^(2)functions were utilized in surface wave tomography.The inverted three-dimensional(3D)shear-wave(S-wave)velocity model reveals two significant low-velocity zones at depths ranging from 40 to 60 m,which align well with the karst caves found in the drilling data.The method of short-term synchronous-asynchronous ambient noise tomography shows promise as a cost-effective and efficient approach for urban geohazard investigations.
文摘This study investigates the relationships between exposures to ambient air pollution—specifically particulate matter 2.5 (PM_(2.5)) and its metabolites—and the risk of depression.Nonlinear and linear regression,Bayesian kernel machine regression,and toxicogenomic analysis were key approaches.PM_(2.5)exposure was positively associated with the risk of developing depression,whereas phenylglyoxylic acid exposure was negatively associated with depression risk.We found a significant overall relationship between ambient air pollution and depression,particularly at the 55th and 60th percentiles.Although statistical significance was not reached at the 65th percentile,there was a noticeable upward trend,indicating a potential association.Interestingly,no significant connection was found between a combination of metabolites from ambient air pollution and depression.PM_(2.5)and phenylglyoxylic acid emerged as the most influential compounds in the models,respectively.PM_(2.5)exposure altered the expression of 42 specific targets associated with depression,especially POMC,SCL6A4,IL6,and SOD2.The study identified specific pathways related to insulin secretion,energy metabolism,blood circulation,tube diameter,and maintenance of blood vessel diameter,as well as key molecular mechanisms involving hsa-miR-124-3p,hsa-miR-155-5p,hsa-miR-16-5p,and SP1.These mechanisms were found to underlie the etiology of depression associated with PM_(2.5)exposure.In conclusions,PM_(2.5)and phenylglyoxylic acid were found to be associated with depression.Further work is needed to gain insight into the molecular mechanisms by which these chemicals affect depression,especially pathways related to insulin secretion and blood circulation.
基金financially supported by the National Key Research and Development Program of China (2022YFC3005600)the Foundation of the Anhui Educational Commission (2023AH051198)+1 种基金the National Natural Science Foundation of China (42125401 and 42104063)the Joint Open Fund of Mengcheng National Geophysical Observatory (MENGO-202201)。
文摘The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas.
基金funded by the National Key R&D Program of China (Grant No. 2021YFC3000704)the National Natural Science Foundation of China (Grant No. 42125401)the Central Public-interest Scientific Institution Basal Research Fund (Grant No. CEAIEF20240401)。
文摘The Anninghe–Zemuhe Fault and the Xiaojiang Fault are critical active faults along the middle-eastern boundary of the South Chuan–Dian Block. Many researchers have identified these faults as potential strong-earthquake risk zones. In this study, we leveraged a dense seismic array to investigate the high-resolution shallow crust shear wave velocity(Vs) structure beneath the junction of the Zemuhe Fault Zone and the Xiaojiang Fault Zone, one of the most complex parts of the eastern boundary of the South Chuan–Dian Block. We analyzed the distribution of microseismic events detected between November 2022 and February 2023 based on the fine-scale Vs model obtained. The microseismicity in the study region was clustered into three groups, all spatially related to major faults in this region. These microseismic events indicate near-vertical fault planes, consistent with the fault geometry revealed by other researchers.Moreover, these microseismic events are influenced by the impoundment of the downstream Baihetan Reservoir and the complex tectonic stress near the junction of the Zemuhe Fault Zone and the Xiaojiang Fault Zone. The depths of these microseismic events are shallower in the junction zone, whereas moving south along the Xiaojiang Fault Zone, the microseismic events become deeper.Additionally, we compared our fine-scale local Vs model with velocity models obtained by other researchers and found that our model offers greater detail in characterizing subsurface heterogeneity while demonstrating improved reliability in delineating fault systems.
基金supported by the National Natural Science Foundation of China(Grant No.42174126)the Alliance of International Science Organizations(ANSO)Project(Grant No.ANSO-CR-PP2022-04)+1 种基金the Deep Earth Probe and Mineral Resources Exploration National Science and Technology Major Project(Grant Nos.2024ZD1002206,2024ZD1002201)Key R&D Program of Xinjiang Uyghur Autonomous Region(Grant No.2024B03013-2)。
文摘The Pamir Plateau,at the northwestern margin of the Tibetan Plateau,is a key region for investigating continental collision and plateau uplifting.To probe its deep structure,we collected seismic data from 263 stations across 11 research projects.We applied cross-correlation to noise data and extracted surface wave dispersion data from cross-correlation functions.The extracted dispersion data were subsequently inverted using a 3-D transdimensional Bayesian inversion method(rj-3 DMcMC).The inversion result reveals several crustal low-velocity zones(LVZs).Their formation is likely related to crustal thickening,the exposure of gneiss domes,and thicker sedimentary sequences compared to surrounding areas.In the lower crust and upper mantle,the LVZs in southern Pamir and southeastern Karakoram evolve into high-velocity zones,which expand northeastward with increasing depth.This suggests northward underthrusting of the Indian Plate.We also analyzed the Moho using both the standard deviation of S-wave velocity and the S-wave velocity structure.Results show that significant variations in velocity standard deviation reliably delineate the Moho interface.
基金supported by the National Natural Science Foundation of China(22379074)Young Science and Technology Talent Program of Inner Mongolia Province(NJYT24001)+4 种基金Natural Sciences and Engineering Research Council of Canada(NSERC)GLABAT Solid-State Battery Inc.,China Automotive Battery Research Institute Co.Ltd,Canada Research Chair Program(CRC)Canada Foundation for Innovation(CFI)Ontario Research Fundsupported by the Chinese Scholarship Council.
文摘High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address these above issues,solid-state Li–air batteries have been widely developed.However,many commonly-used solid electrolytes generally face huge interface impedance inLi–air cells and also showpoor stability towards ambient air/Li electrodes.Herein,we fabricate a differentiating surface-regulated ceramic-based composite electrolyte(DSCCE)by constructing disparately LiI-containing polymethyl methacrylate(PMMA)coating and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)layer on both sides of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_(4))_(3)(LAGP).The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system.Additionally,the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover,Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniformand compact composite framework.As a result,the DSCCE-based Li–air batteries possess high capacity/low voltage polarization(11,836mAh g^(-1)/1.45Vunder 500mAg^(-1)),good rate performance(capacity ratio under 1000mAg^(-1)/250mAg^(-1) is 68.2%)and longterm stable cell operation(~300 cycles at 750 mA g^(-1) with 750 mAh g^(-1))in ambient air.
基金supported by the Shandong Provincial Natural Science Foundation,China(ZR2021QC131)the Shandong Province Key Research and Development Plan,China(2022TZXD001102)+1 种基金the Shandong Province Demonstration Project for Model Construction in Rural Revitalization Service,China(2022DXAL0226)the Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2023F15,CXGC2023A41,and CXGC2023A47)。
文摘Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed that the growth rate,spore production and virulence of C.vitis significantly declined in alkaline pH,as well as the suppressive effect on secretion of hydrolytic enzymes.Transcriptomic and metabolomic analyses were used to investigate the responses of C.vitis to acidic(pH 5),neutral(pH 7)and alkaline environments(pH 9).We identified 728,1,780 and 3,386 differentially expressed genes(DEGs)at pH 5,pH 7 and pH 9,when compared with the host pH(pH 3),and 2,122 differently expressed metabolites(DEMs)in negative and positive ion mode.Most DEGs were involved in carbohydrate metabolic process,transmembrane transport,tricarboxylic acid cycle,peptide metabolic process,amide biosynthetic process,and organic acid metabolic process.In addition,metabolomic analysis revealed ABC transporters,indole alkaloid biosynthesis,diterpenoid biosynthesis,and carotenoid biosynthesis pathways in response to the pH change.Furthermore,we found that the aspartate synthesis metabolic route associated with the TCA cycle is a key limiting factor for the growth and development of C.vitis in alkaline environments,and aspartate supplementation enables C.vitis to grow in alkaline environments.Plant cell wall-degrading enzymes(PCWDEs)could contribute to the pathogenicity,when C.vitis infected at pH 3.Importantly,aflatrem biosynthesis in acidic environment might contribute to the virulence of C.vitis and has a risk of causing human health problems due to its acute neurotoxic effects.
基金the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 445-9-687。
文摘Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In this context,laser-induced tuning of charge carriers in graphene facilitates the exploration of graphene's properties in relation to its surroundings and enables laser-assisted functionalization. This has the potential to advance optoelectronic devices that utilize graphene on transparent dielectric substrates, such as Al_(2)O_(3). In this work, laser power(PL) in Raman spectroscopy is used as a convenient contactless tool to manipulate and control unintentional carrier concentration and Fermi level position(EF) in graphene/α-Al_(2)O_(3)(G/Al_(2)O_(3)) under ambient conditions. Samples are annealed at 400℃ for two hours in an(Ar + H_(2)) atmosphere to remove any chemical residues. Analysis of the peak frequency(ω) and full width at half maximum(Γ) of the G and 2D bands show that G/Al_(2)O_(3) layers initially exhibit p-type doping, with EF located at ~100 me V below its Dirac charge-neutral point(DCNP). Increasing P_(L) results in effective carrier manipulation and raises E_F above DCNP. No significant internal stress is produced due to P_(L), as inferred from the strain-sensitive G^(*) band of graphene. Raman analysis of three successive cycles reveals hysteretic behavior from cycle to cycle, which is commonly reported to be limited by the type and density of the existing unintentional doping. Because of the ubiquitous nature of unintentional doping in graphene,manipulating it using contactless laser power to realize the desired graphene properties would be one of the best available practical approaches.
基金National science and technology signifi cant special(No.2024ZD1003406)Natural Science Research Project of Colleges and Universities in Anhui Province(No.2024AH050374)National Natural Science Foundation of China(Grant No.52274071).
文摘The advancement of intelligent mining in open-pit operations has imposed higher demands on geological transparency,aiming to provide a robust foundation for intelligent drilling and charging.In this study,a linear array of 120 nodal seismometers was deployed along the surfaces of the C8 and C9 platforms at Fenghuang Mountain to investigate cavities within the rock mass and prevent improper intelligent charging.The seismometers were 1 m apart along measurement lines,with a 2-m spacing between lines,and the monitoring time for each line was set at 2 h.This deployment was paired with spatial autocorrelation and station autocorrelation to analyze ambient noise seismic data and image the velocity and structure within the rock mass.The results demonstrate that the locations and sizes of cavities or loose structures can be accurately identified at the prepared excavation site.Compared with traditional geological exploration methods for openpit mines,the approach in this study off ers higher accuracy,greater efficiency,reduced labor intensity,and insensitivity to water conditions.Ambient noise seismic imaging for detecting adverse geological conditions in open-pit mines provides critical insights and references for intelligent mining advancements.
基金supported by the Key Research and Development Program of China(2021YFC3000704)Institute of Geophysics,China Earthquake Administration Grant DQJB23R18+1 种基金the USTC Research Funds of the Double First-Class Initiative(YD2080002012)NSFC Grant(U2239206)。
文摘Ambient noise tomography is an established technique in seismology,where calculating single-or ninecomponent noise cross-correlation functions(NCFs)is a fundamental first step.In this study,we introduced a novel CPU-GPU heterogeneous computing framework designed to significantly enhance the efficiency of computing 9-component NCFs from seismic ambient noise data.This framework not only accelerated the computational process by leveraging the Compute Unified Device Architecture(CUDA)but also improved the signal-to-noise ratio(SNR)through innovative stacking techniques,such as time-frequency domain phaseweighted stacking(tf-PWS).We validated the program using multiple datasets,confirming its superior computation speed,improved reliability,and higher signal-to-noise ratios for NCFs.Our comprehensive study provides detailed insights into optimizing the computational processes for noise cross-correlation functions,thereby enhancing the precision and efficiency of ambient noise imaging.
文摘Neural stem cells(NSCs)play a fundamental role in generating diverse neuronal populations that contribute to the formation of intricate neural circuitry.Disturbances arising from intrinsic or extrinsic factors can alter the developmental behavior of NSCs and disrupt nervous system homeostasis.While intrinsic regulatory mechanisms have been elucidated extensively in invertebrate or vertebrate models,the regulatory mechanisms underlying extrinsic cues from the cellular environment remain poorly understood.This review synthesized recent research on cellular ambient effects,including the microenvironment,systemic environment and external factors,on NSCs in Drosophila.Key topics include spatial cues,NSC-glia interactions,long-distance regulation by tissues such as the fat body,and the external environmental stressors like irradiation or viral infection.By integrating these findings,this review provides new insights into how extrinsic signals shape NSCs and bridges gaps between foundational research and clinical translation.
基金supported by research grants of the Youth Innovation Promotion Association of CAS(Grant No.2021446)the National Science Foundation of China(Grant Nos.12204484,51672279,12174398 and 11874361)+1 种基金the Anhui Key Research and Development Program(Grant No.2022h11020007)the HFIPS Director’s Fund of the Chinese Academy of Sciences(Grant Nos.BJPY2022B02,YZJJ202102,YZJJ-GGZX-2022-01,and 2021YZGH03).
文摘High-pressure synthesis of lutetium hydrides from molecular hydrogen(H_(2))and lutetium(Lu)is systematically investigated using synchrotron X-ray diffraction,Raman spectroscopy,and visual observations.We demonstrate that the reaction pathway between H_(2)and Lu invariably follows the sequence Lu→LuH_(2)→LuH_(3)and exhibits a notable time dependence.A comprehensive diagram representing the formation and synthesis of lutetium hydrides as a function of pressure and time is constructed.Our findings indicate that the synthesis can be accelerated by elevated temperature and decelerated by increased pressure.Notably,two critical pressure thresholds at ambient temperature are identified:the synthesis of LuH_(2)from Lu commences at a minimum pressure of~3 GPa,while~28 GPa is the minimum pressure at which LuH_(2)fails to transform into LuH_(3)within a time scale of months.This underscores the significant impact of temporal factors on synthesis,with the reaction completion time increasing sub-linearly with rising pressure.Furthermore,the cubic phase of LuH_(3)can be obtained exclusively through compressing the trigonal LuH_(3)phase at~11.5 GPa.We also demonstrate that the bandgap of LuH_(3)slowly closes under pressure and is noticeably lower than that of LuH_(2).
文摘BACKGROUND To investigate whether seasonal differences in ambient temperature affect the incidence of early postoperative cognitive dysfunction(POCD)among elderly patients undergoing laparoscopic surgery in tropical regions.Additionally,it explored the perioperative risk factors associated with early POCD following abdominal laparoscopic surgery.AIM To investigate the influence of seasonal differences in ambient temperature on POCD of elderly patients METHODS A total of 125 patients aged≥65 years from Hainan Province,China,who underwent laparoscopic surgery under general anesthesia with tracheal intubation,were enrolled. All patients completed the Mini-Mental State Examination one day before surgery and onpostoperative days 1, 3, and 7. A decline of ≥ 2 points from baseline was considered indicative of cognitivedysfunction. Serum levels of S100 calcium binding protein B and neuron-specific enolase were measured usingenzyme-linked immunosorbent assay at three time points: Preoperatively, immediately after extubation, and 24hours postoperatively. Perioperative clinical data were collected to identify potential risk factors for POCD.Propensity score matching (PSM) was performed (1:1, caliper = 0.03), resulting in 41 matched patient pairs betweenwinter and summer groups.RESULTSAfter PSM, baseline characteristics including age, gender, body mass index, education level, comorbidities, andsurgical variables were well balanced between groups. There were no significant differences in the incidence ofPOCD on postoperative days 1, 3, and 7 between patients undergoing laparoscopic surgery in winter vs summer.However, multivariable logistic regression revealed that surgical duration (day 1, P value = 0.049), advanced ageand elevated creatinine (day 3, P value = 0.044, P value = 0.008), and hypoalbuminemia (day 3, P value = 0.042;day7, P value = 0.015) were independently associated with early POCD.CONCLUSIONAmbient temperature differences between winter and summer in tropical regions did not significantly affect theincidence of early POCD in elderly patients undergoing laparoscopic surgery. Nonetheless, age, longer surgicalduration, elevated creatinine, and hypoalbuminemia emerged as key risk factors. These findings underscore theimportance of perioperative optimization to reduce the risk of POCD in elderly patients, regardless of seasonaltemperature variations.