The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance ...The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.展开更多
Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT gen...Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT generally faces the challenges from energy constraint and implementation cost. In this paper, we will introduce a new green communication paradigm, the ambient backscatter (AmBC), that could utilize the environmental wireless signals for both powering a tiny-cost device and backscattering the information symbols. Specifically, we will present the basic principles of AmBC, analyze its features and advantages, suggest its open problems, and predict its potential applications for our future IoT.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62271192in part by Central Plains Talents Plan under Grant ZYYCYU202012173+9 种基金in part by theNationalKeyR&DProgramof China underGrant 2020YFB2008400in part by the Program of CEMEE under Grant 2022Z00202Bin part by the LAGEO of Chinese Academy of Sciences underGrantLAGEO-2019-2in part by the Program for Science and Technology Innovation Talents in the University of Henan Province under Grant 20HASTIT022in part by the Natural Science Foundation of Henan under Grant 202300410126in part by the Program for Innovative Research Team in University of Henan Province under Grant 21IRTSTHN015in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Training Program for Young Scholar of Henan Province for Colleges and Universities under Grant 2020GGJS172in part by the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant 22HASTIT020in part by the Henan Province Science Fund for Distinguished Young Scholars under Grant 222300420006.
文摘The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.
基金supported in part by National Key R&D Program of China under Grant 2016YFE0200900part by Scientific Research Program of Beijing Municipal Commission of Education under Grant KM201910853003part by Major projects of Beijing Municipal Science and Technology Commission under Grant Z181100003218010
文摘Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT generally faces the challenges from energy constraint and implementation cost. In this paper, we will introduce a new green communication paradigm, the ambient backscatter (AmBC), that could utilize the environmental wireless signals for both powering a tiny-cost device and backscattering the information symbols. Specifically, we will present the basic principles of AmBC, analyze its features and advantages, suggest its open problems, and predict its potential applications for our future IoT.