We shall give some results on generalized aluthge transformation for phyponormal and log-hyponormal operators. We shall also discuss the best possibility of these results.
Let T = U|T| be the polar decomposition of a bounded linear operator T on a Hilbert space. The transformation T = |T|^1/2 U|T|^1/2 is called the Aluthge transformation and Tn means the n-th Aluthge transformatio...Let T = U|T| be the polar decomposition of a bounded linear operator T on a Hilbert space. The transformation T = |T|^1/2 U|T|^1/2 is called the Aluthge transformation and Tn means the n-th Aluthge transformation. Similarly, the transformation T(*)=|T*|^1/2 U|T*|&1/2 is called the *-Aluthge transformation and Tn^(*) means the n-th *-Aluthge transformation. In this paper, firstly, we show that T(*) = UV|T^(*)| is the polar decomposition of T(*), where |T|^1/2 |T^*|^1/2 = V||T|^1/2 |T^*|^1/2| is the polar decomposition. Secondly, we show that T(*) = U|T^(*)| if and only if T is binormal, i.e., [|T|, |T^*|]=0, where [A, B] = AB - BA for any operator A and B. Lastly, we show that Tn^(*) is binormal for all non-negative integer n if and only if T is centered, and so on.展开更多
基金Supported by Education Foundation of Henan Province(200510463024)Supported by the Foundation of Henan University of Technology(20050206)
文摘We shall give some results on generalized aluthge transformation for phyponormal and log-hyponormal operators. We shall also discuss the best possibility of these results.
基金Science Foundation of Minisitry of Education of China (No.208081)
文摘Let T = U|T| be the polar decomposition of a bounded linear operator T on a Hilbert space. The transformation T = |T|^1/2 U|T|^1/2 is called the Aluthge transformation and Tn means the n-th Aluthge transformation. Similarly, the transformation T(*)=|T*|^1/2 U|T*|&1/2 is called the *-Aluthge transformation and Tn^(*) means the n-th *-Aluthge transformation. In this paper, firstly, we show that T(*) = UV|T^(*)| is the polar decomposition of T(*), where |T|^1/2 |T^*|^1/2 = V||T|^1/2 |T^*|^1/2| is the polar decomposition. Secondly, we show that T(*) = U|T^(*)| if and only if T is binormal, i.e., [|T|, |T^*|]=0, where [A, B] = AB - BA for any operator A and B. Lastly, we show that Tn^(*) is binormal for all non-negative integer n if and only if T is centered, and so on.