期刊文献+
共找到1,349篇文章
< 1 2 68 >
每页显示 20 50 100
Influence of twist extrusion process on consolidation of pure aluminum powder in tubes by equal channel angular pressing and torsion 被引量:4
1
作者 王晓溪 何敏 +2 位作者 朱珍 薛克敏 李萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2122-2129,共8页
In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal ch... In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process. 展开更多
关键词 aluminum powder equal channel angular pressing and torsion powder consolidation back pressure
在线阅读 下载PDF
Promotional effect of silica on the combustion of nano-sized aluminum powder in carbon dioxide 被引量:4
2
作者 Baozhong ZHU Jinghui WANG +3 位作者 Qichang WANG Yunlan SUN Weiqi CHEN Jiquan WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期245-252,共8页
This paper presents how the combustion performance of nano-sized aluminum(nAl)powder in carbon dioxide are affected by silica. The ignition and combustion performance of nAl powder with silica addition were studied by... This paper presents how the combustion performance of nano-sized aluminum(nAl)powder in carbon dioxide are affected by silica. The ignition and combustion performance of nAl powder with silica addition were studied by a high-temperature tube furnace. An s-type thermocouple and a high-speed motion acquisition instrument were performed to evaluate the ignition temperature, maximum combustion temperature, maximum change of rate of temperature, and combustion propagation speed. The combustion efficiency and combustion products were measured and analyzed by a gas-volumetric method and an X-ray diffraction. The results show that silica added into nAl powder can enhance its maximum combustion temperature and maximum change of rate of temperature, while its ignition temperature increases slightly. The nAl powders with addition of 6.00 wt.% and 12.00 wt.% silica present high combustion propagation speeds, especially for the latter, it has high combustion efficiency. The effect mechanism of silica on the combustion of nAl powder in carbon dioxide was discussed. 展开更多
关键词 COMBUSTION MECHANISM Nano-sized aluminum powder Promotional effect SILICA
原文传递
Studies on aluminum powder combustion in detonation environment 被引量:3
3
作者 Jian-Xin Nie Run-Zhe Kan +3 位作者 Qing-Jie Jiao Qiu-Shi Wang Xue-Yong Guo Shi Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期426-435,共10页
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion... The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion model of the aluminum particles in detonation environment was established.Based on this model,a combustion control equation for aluminum particles in detonation environment was obtained.It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size,system temperature,and diffusion coefficient.The calculation result shows that a higher system temperature,larger diffusion coefficient,and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles.After considering the particle size distribution characteristics of aluminum powder,the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder,and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results.This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment. 展开更多
关键词 aluminum particle combustion model aluminum powder burn rate equation burning time
原文传递
Blast performance of layered charges enveloped by aluminum powder/rubber composites in confined spaces 被引量:1
4
作者 Jun-bao Li Wei-bing Li +2 位作者 Jia-xin Yu Wei Xiao He-yang Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期583-592,共10页
A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted... A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al. 展开更多
关键词 Confined explosion aluminum powder/rubber composites Layered charge Blast parameters
在线阅读 下载PDF
High Velocity Compaction of Aluminum Powders 被引量:2
5
作者 Khan Dil Faraz 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S3期86-89,共4页
High velocity compaction process of atomized Al powders was studied. The green density, the maximal force and the withdraw force of specimen were investigated. The green density of atomized aluminum powder was obtaine... High velocity compaction process of atomized Al powders was studied. The green density, the maximal force and the withdraw force of specimen were investigated. The green density of atomized aluminum powder was obtained to be 2.68 g/cm3 and its relative density is about 99%. The maximal force increased proximately linearly with the compaction energy. The withdraw force was observed ranging between 30 and 70 kN. The radial spring back was less than 0.1%. 展开更多
关键词 HIGH VELOCITY COMPACTION powder METALLURGY aluminum powder
原文传递
A Steam-Plasma Igniter for Aluminum Powder Combustion 被引量:2
6
作者 Sanghyup LEE Kwanyoung NOH +1 位作者 Jihwan LIM Woongsup YOON 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第5期392-401,共10页
High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch... High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions. A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests. The steam plasma rapidly stabilizes in both plasma and steam jet modes. Parametric investigation of the steam plasma jet is conducted in terms of arc strength. A high-speed camera and an oscilloscope method visualize the discharge characteristics, and optical emission spectroscopy measures the thermochemical properties of the plasma jet. The diatomic molecule OH fitting method, the Boltzmann plot method, and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature, excitation temperature, and OH radical distribution, respectively. The excitation temperature at the nozzle tip is near 5500 K, and the gas temperature is 5400 K. 展开更多
关键词 steam plasma igniter aluminum emission spectroscopy energetic metal fuels powder ignition and combustion optical
在线阅读 下载PDF
MIG welding microstructure,residual stress and mechanical properties of powder metallurgy 7A52 aluminum alloys
7
作者 Jing-han YANG Peng-fei JI +8 位作者 Lin-yang WU Xiao-yun DING Jin-chao JIAO Meng-hui CUI Xing-yu CHEN Jin ZHANG Yong LIAN Lin ZHENG Shi-tao DOU 《Transactions of Nonferrous Metals Society of China》 2025年第8期2500-2520,共21页
The MIG welding of in-situ generated nano-Al_(2)O_(3)powder metallurgy 7A52(PM 7A52)aluminum alloy was investigated.The microstructure was characterized using EBSD and TEM,while macrotexture and internal residual stre... The MIG welding of in-situ generated nano-Al_(2)O_(3)powder metallurgy 7A52(PM 7A52)aluminum alloy was investigated.The microstructure was characterized using EBSD and TEM,while macrotexture and internal residual stresses were analyzed with a self-developed SWXRD technique.The results revealed that PM 7A52 aluminum alloy effectively reduced the grain size,dislocation density,and texture strength in the post-weld microstructure.Furthermore,the residual stress in the weld zone(WZ)of PM 7A52 aluminum alloy was reduced by 38 MPa compared to that of the conventional melt-cast 7A52(CM 7A52)aluminum alloy.Notably,the tensile strength and elongation of welded joints in PM 7A52 aluminum alloy were increased by approximately 15%and 26%,respectively.The improvement in joint tensile strength was primarily attributed to grain boundary strengthening and dispersion strengthening caused byγ-Al_(2)O_(3)particles entering the WZ. 展开更多
关键词 powder metallurgy 7A52 aluminum alloy MIG welding SWXRD technique TEXTURE residual stress mechanical properties
在线阅读 下载PDF
Aluminum and Activated Alumina Powder Additions on Microwave Synthesis of Al_(4)SiC_(4) 被引量:1
8
作者 WANG Li LIU Shijie +6 位作者 WEI Haoyu MA Juanjuan DONG Binbin GENG Shangrui YAN Miaoxin QIN Feng GUO Yusen 《China's Refractories》 CAS 2024年第1期44-48,共5页
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat... Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance. 展开更多
关键词 aluminum powder activated alumina powder microwave synthesis Al_(4)SiC_(4) magnesia carbon bricks
在线阅读 下载PDF
Analysis of synthetic parameters for coating aluminum powders with phenyltriethoxysilane coupling agent and their effects on powder flow behavior
9
作者 Lillian M.Mawby Bellamarie Ludwig Benjamin J.Lear 《Particuology》 SCIE EI CAS CSCD 2024年第7期412-417,共6页
Though silanization of aluminum powder is currently used to improve its flow properties,for use as an alternative fuel source,there are a wide range of experimental parameters for the process and not all of them have ... Though silanization of aluminum powder is currently used to improve its flow properties,for use as an alternative fuel source,there are a wide range of experimental parameters for the process and not all of them have been thoroughly explored.Until this is complete,it is unknown if the process is optimized in terms of time,efficiency,and effect.Herein,we report on a study into the effects of changes in humidity,degree of agitation,reaction temperature,and curing time upon the deposition of phenyl triethoxysilane into 20μm(d50)aluminum particles.We confirm the deposition of the coating via diffuse reflectance infrared spectroscopy and x-ray photoelectron spectroscopy.We then characterize the coated particles using apparent density measurements and Carney flow methods.Using analysis of variance,we find that,of the parameters explored,only changes in cure time and reaction temperature provide meaningful changes to the apparent density,while none of our parameters produced statistically significant changes in Carney flow values.Thus,we conclude that,when optimizing silanization of aluminum particles,environmental control of humidity is unneeded and that the reaction can be run with minimal agitation.The ability to largely ignore these parameters is a benefit to large-scale processing. 展开更多
关键词 aluminum powder SILANE FLUIDIZATION Apparent density Carney flow
原文传递
Low-temperature pressureless consolidation of AlSi10Mg powders by low-intensity ultrasound
10
作者 Yu-ze LI Long-fei ZHU +3 位作者 Xin WANG Song TANG Ting LUO Jian-yuan WANG 《Transactions of Nonferrous Metals Society of China》 2025年第2期349-361,共13页
Low-intensity ultrasound was applied to the pressureless consolidation of AlSi10Mg powders in a broad temperature range from 600 to 860℃.Under static conditions,the consolidation of AlSi10Mg powders can only be achie... Low-intensity ultrasound was applied to the pressureless consolidation of AlSi10Mg powders in a broad temperature range from 600 to 860℃.Under static conditions,the consolidation of AlSi10Mg powders can only be achieved at 860℃,but still with the presence of some residual unconsolidated regions.The introduction of low-intensity ultrasound at this temperature eliminates the unconsolidated regions and transforms the columnar grains observed in original directional solidification into equiaxed or globular grains.Remarkably,the application of low-intensity ultrasound significantly reduces the consolidation temperature to 620℃,without compromising the microhardness of the resulting samples when compared to static conditions.Furthermore,by lowering the temperature to 600℃,a well-sintered porous material is obtained through the assistance of the low-intensity ultrasound. 展开更多
关键词 low-intensity ultrasound pressureless consolidation aluminum powders columnar-to-equiaxed transition MICROHARDNESS
在线阅读 下载PDF
AP assembled on ultrafine aluminum particle and its application to NEPE propellant
11
作者 Huixin Wang Qiang Li +3 位作者 Hui Ren Liangjun Xie Tingting Liu Zhihong Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期20-29,共10页
Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spheric... Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants. 展开更多
关键词 aluminum powder COATING NEPE propellant Energy output Applied research
在线阅读 下载PDF
THE PREPARATION AND APPLICATION OF ELECTROPLATEDSHEET CONTAINING RS ALUMINUM ALLOY POWDERS 被引量:1
12
作者 Y.S. Dong and P.H. Lin (Department of Mechanical Engineering, Southeast University, Nanjing 210096, China) J. Shen and Q.C. Li (School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1047-1052,共6页
Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and ni... Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and nickel matrix are combined well in the sheet. It can be used to prepare the observation specimen for TEM and determine the hardness of single powder particle as solidified and after heat-treated. The advantages of this method are the realization of heat treatment of powders and the TEM observation of non-interfered microstructure of powders in the size of several microns. 展开更多
关键词 aluminum alloy powder electroplating microstructure HARDNESS
在线阅读 下载PDF
THE STRUCTURE CONTROL OF ALUMINUM FOAMS PRODUCED BY POWDER COMPACTED FOAMING PROCESS 被引量:4
13
作者 X.H.You F. Wang L.C.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期279-282,共4页
A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subseq... A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature. 展开更多
关键词 aluminum foams powder compact foaming process foam structure
在线阅读 下载PDF
Mechanical Properties of a Low-thermal-expansion Aluminum/Silicon Composite Produced by Powder Metallurgy 被引量:8
14
作者 Y.Q.Liu S.H.Wei +2 位作者 J.Z.Fan Z.L.Ma T.Zuo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第4期417-422,共6页
AI matrix composite containing high volume fraction silicon has been promising candidate for lightweight and low-thermal-expansion components. Whereas, optimization of its mechanical properties still is an open challe... AI matrix composite containing high volume fraction silicon has been promising candidate for lightweight and low-thermal-expansion components. Whereas, optimization of its mechanical properties still is an open challenge. In this article, a flexile powder metallurgy processing was used to produce a fully dense AI-4.0Cu (wt%) alloy composite reinforced with 65 vol.% Si particles. In this composite, Si particles were homogenously distributed, and the particle size was refined to the range of 3-15 μm. Tensile and flexural strength of the composite were 282 and 455 MPa, respectively, about 100% and 50% higher than the best properties reported in literature. The measured fracture toughness of the composite was 4.90 MPa m1/2. The improved strength of 65%Si/AI was attributed to the optimized particle characteristics and matrix properties. This investigation is expected to provide a primary understanding of the mechanical behaviors of Si/AI composites, and also promote the structural applications of this low-thermal-expansion material. 展开更多
关键词 aluminum matrix composite powder metallurgy Mechanical properties Coefficient of thermal expansion FRACTURE
原文传递
Nanostructured yttrium aluminum garnet powders synthesized by co-precipitation method using tetraethylenepentamine 被引量:2
15
作者 李先学 王文菊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期967-970,共4页
Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-pre... Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ... 展开更多
关键词 yttrium aluminum garnet powder technology CO-PRECIPITATION CERAMICS rare earths
在线阅读 下载PDF
PREPARATION OF ULTRAFINE ALUMINA POWDERS BY ALUMINUM ISOPROPOXIDE 被引量:2
16
作者 Yu,Zhongqing Zhao,Qinsheng Zhang,Qixiu(Department of Nonferrous Metallurgy,Central South University of Techonology,Changsha 410083) 《中国有色金属学会会刊:英文版》 CSCD 1994年第2期21-24,共4页
PREPARATIONOFULTRAFINEALUMINAPOWDERSBYALUMINUMISOPROPOXIDEPREPARATIONOFULTRAFINEALUMINAPOWDERSBYALUMINUMISOP... PREPARATIONOFULTRAFINEALUMINAPOWDERSBYALUMINUMISOPROPOXIDEPREPARATIONOFULTRAFINEALUMINAPOWDERSBYALUMINUMISOPROPOXIDE¥Yu,Zhong... 展开更多
关键词 aluminum ISOPROPOXIDE ALUMINA ULTRAFINE powderS HYDROLYSIS CALCINATION
在线阅读 下载PDF
Effect of Laser Cladding Al Ni TiC Powder on Microstructure and Properties of Aluminum Alloy 被引量:2
17
作者 Xiaolin Zhang Kemin Zhang +1 位作者 Jinxin Ma Yu Wang 《Journal of Minerals and Materials Characterization and Engineering》 2017年第1期29-38,共10页
In this paper, Al/Ni/TiC powders were mixed on the surface of A380 aluminum alloy, by selecting appropriate laser parameters;the cladding layer with good adhesion to the substrate was obtained. The microstructure and ... In this paper, Al/Ni/TiC powders were mixed on the surface of A380 aluminum alloy, by selecting appropriate laser parameters;the cladding layer with good adhesion to the substrate was obtained. The microstructure and properties of the cladding layer under different laser parameters were analyzed. The results show that: the phase composition of the cladding layer is mainly composed of TiC, Al, Ni, C and Ti phases. The hardness of the cladding region is up to 173.3 HV, which is about 2.9 times the matrix (–59.1 HV). The corrosion voltage (–1.8 V) of the cladding layer shifted significantly from the corrosion potential (–1.18 V), the corrosion current density increased, the resistance value decreased and the diameter of the capacitor arc decreased;all these phenomena indicate that the corrosion resistance of the cladding layer is decreased. 展开更多
关键词 aluminum Alloy Laser CLADDING TIC powder Microstructure Corrosion Resistance
在线阅读 下载PDF
Specimen preparation of aluminum alloy powders for transmission electron microscopy
18
作者 董寅生 沈军 +2 位作者 杨英俊 林萍华 李庆春 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期401-404,共4页
By nickel electroplating at room temperature, the specimen preparation of ultra sonic gas atomized aluminum alloy powders for observation in transmission electron microscope was carried out. The advantages of this tec... By nickel electroplating at room temperature, the specimen preparation of ultra sonic gas atomized aluminum alloy powders for observation in transmission electron microscope was carried out. The advantages of this technique are simple technologically and convenient practically. The nickel and the powders combine well in the plated sheet which can be thinned by ion milling. The powders in the thinned sheet possess large thinned area and can be examined in common TEM for the studies of their microstructure. 展开更多
关键词 aluminum ALLOYS powderS ELECTROPLATING transmission ELECTRON MICROSCOPE
在线阅读 下载PDF
Study on the impact force and green properties of high-velocity compacted aluminum alloy powder
19
作者 Xian-jie Yuan Hai-qing Yin +2 位作者 Rafi-ud Din Dil-faraz Khan Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第12期1107-1113,共7页
High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green de... High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green density of an aluminum alloy is found to be 2.783 g cm 3. The ejection force for the aluminum alloy is in the range of 23 to 80 kN and the spring back is found to be less than 0.40%. The hardness of the green body is in the range of HRB 30 to 70. The bending strength of the green body is in the range of 6 to 26 MPa, which are higher than that of other aluminum alloys prepared by the traditional compaction method. 展开更多
关键词 aluminum alloys powderS powder metallurgy COMPACTION impact mechanical properties
在线阅读 下载PDF
Synthesis of Neodymium-Doped Yttrium Aluminum Garnet (Nd∶YAG) Nano-Sized Powders by Low Temperature Combustion 被引量:8
20
作者 张华山 苏春辉 +1 位作者 韩辉 侯朝霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期304-308,共5页
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ... The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal. 展开更多
关键词 laser ceramics neodymium-doped yttrium aluminum garnet (Nd∶YAG) nano-sized powders low temperature combustion synthesis (LCS)
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部