Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spa...Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.展开更多
Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite f...Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities.展开更多
基金support from the National Key R&D Program of China(Grant No.2023YFE0111500)the National Natural Science Foundation of China(Grant No.52321006,T2394480,T2394484,22109143,22479131)+8 种基金Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005)the China Postdoctoral Innovative Talent Support Program(Grant No.BX2021271)the China Postdoctoral Science Foundation(2022M712851)the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(Grant No.2022KF04)Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX136Y)Key R&D Special Program of Henan Province(Grant No.241111242000)Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.25HASTIT005)Training Plan for Young Backbone Teachers of Zhengzhou University(Grant No.2023ZDGGJS017)the Joint Research Project of Puyang Shengtong Juyuan New Materials Co.,Ltd.(Grant No.20230128A).
文摘Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.
基金supported by the National Key Research and Development Program of China(2021YFB3800103)the Fundamental Research Funds for the Central Universities(000-0903069032)the National Natural Science Foundation of China(52203237).
文摘Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities.