期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering-Application to circular footing and deep tunnel in saturated ground
1
作者 Simon Heru Prassetyo Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期259-279,共21页
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat... Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%. 展开更多
关键词 Hydro-mechanical(H-M) interaction explicit coupling technique alternating direction explicit(ade) scheme High-order finite difference(FD) Non-uniform grid Axisymmetric consolidation Circular footing Deep tunnel in saturated ground
在线阅读 下载PDF
解对流扩散方程的显式交替方向法 被引量:2
2
作者 刘晓遇 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 1999年第12期31-35,共5页
研究了求解二维时间依赖的对流扩散方程的显式交替方向法。证明了在一个时间步长中迭代算法的收敛性。用此法数值求解了二维线性和非线性对流扩散方程。数值结果表明,算法具有较高精度。由于算法是显式求解,因此具有很好的并行性,适... 研究了求解二维时间依赖的对流扩散方程的显式交替方向法。证明了在一个时间步长中迭代算法的收敛性。用此法数值求解了二维线性和非线性对流扩散方程。数值结果表明,算法具有较高精度。由于算法是显式求解,因此具有很好的并行性,适合于在并行机上解决大规模计算问题。 展开更多
关键词 对流扩散方程 偏微分方程 显示交替方向 数值解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部