To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflectio...To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.展开更多
In[3],Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution.Their experimental results show that the detail of the restored images cannot be r...In[3],Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution.Their experimental results show that the detail of the restored images cannot be recovered.In this paper,we consider images in Lipschitz spaces,and propose to use Lipschitz regularization for images and total variational regularization for point spread functions in blind deconvolution.Our experimental results show that such combination of Lipschitz and total variational regularization methods can recover both images and point spread functions quite well.展开更多
基金supported by the National Natural Science Foundation of China(No.62071365)the Key Research and Development Program of Shaanxi Province(No.2017ZDCXL-GY-06-02).
文摘To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.
基金This research is supported in part by RGC 7046/03P,7035/04P,7035/05P and HKBU FRGs.
文摘In[3],Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution.Their experimental results show that the detail of the restored images cannot be recovered.In this paper,we consider images in Lipschitz spaces,and propose to use Lipschitz regularization for images and total variational regularization for point spread functions in blind deconvolution.Our experimental results show that such combination of Lipschitz and total variational regularization methods can recover both images and point spread functions quite well.