Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to f...1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to further reduce weight,functional elements like electric actuators can be substituted with intelligent materials like shape memory alloys(SMAs)[2,3].Among SMAs,NiTi alloy stands out for its sens-ing and actuation capabilities,significantly enhancing the safety and reliability of engineering structures[4,5].Integrating Ti6Al4V and NiTi alloys within a single component holds the potential to provide precise feedback on mechanical,thermal,or environmen-tal conditions[6,7].展开更多
The types and contents of phyllosilicate minerals in soils play an important role in soil acidification,as soil acid buffering capacity varies with the composition of the phyllosilicate minerals.In addition to aluminu...The types and contents of phyllosilicate minerals in soils play an important role in soil acidification,as soil acid buffering capacity varies with the composition of the phyllosilicate minerals.In addition to aluminum-oxygen(Al-O)octahedrons,a certain number of Al-O tetrahedrons exist in phyllosilicate minerals due to the isomorphic substitution of silicon ion(Si4+)by aluminum ion(Al3+)in Si-O tetrahedrons of minerals.However,the effect of the two coordination structures of Al on the release of Al during mineral acidification has not yet been investigated.Therefore,the differences in Al activation in phyllosilicate minerals and soils with different Al coordination structures were investigated through constant-p H experiments and27Al magic-angle spinning nuclear magnetic resonance(MAS-NMR)measurements.The results of27Al MAS-NMR spectra showed that kaolinite contained Al-O octahedrons,phlogopite and illite contained Al-O tetrahedrons,and vermiculite composite contained both octahedral and tetrahedral Al.At p H<5.1,the content of Al released from minerals during simulated acidification followed the order:illite>vermiculite composite>phlogopite>kaolinite,which was consistent with the orders of cation exchange capacity and content of tetrahedral Al of the minerals.According to the rate constants,the Al release rates were in the order of phlogopite>illite>vermiculite composite>kaolinite at p H 4.8.Except for phlogopite,the Al release rates in these minerals increased with decreasing suspension p H.Therefore,the Al release contents and rates were greater in phlogopite,illite,and vermiculite composite containing Al-O tetrahedrons than in kaolinite containing only Al-O octahedrons.Two Oxisols derived from basalt with different ages were selected for similar studies.The27Al MAS-NMR spectra of the Oxisols showed that the 0.01-million-year(Ma)Oxisol contained both octahedral and tetrahedral Al,while the 1.33-Ma Oxisol contained only Al-O octahedrons.The contents of both exchangeable and soluble Al released from the 0.01-Ma Oxisol were greater than those from the 1.33-Ma Oxisol when the two soils were acidified to the same p H.The results from minerals and soils confirmed that Al was more readily released into solution and exchangeable sites as soluble and exchangeable Al in Al-O tetrahedrons than in Al-O octahedrons during the acidification of soils and minerals.The findings of this study will provide useful references for investigating the mechanisms of solid phase Al release and for mitigating soil acidification and inhibiting Al activation in different soil types.展开更多
B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,i...B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites.展开更多
A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PT...A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.展开更多
The high content of aluminum(Al)impurity in the recycled cathode powder seriously affects the extraction efficiency of Nickel,Cobalt,Manganese,and Lithium resources and the actual commercial value of recycled material...The high content of aluminum(Al)impurity in the recycled cathode powder seriously affects the extraction efficiency of Nickel,Cobalt,Manganese,and Lithium resources and the actual commercial value of recycled materials,so Al removal is crucially important to conform to the industrial standard of spent Li-ion battery cathode materials.In this work,we systematically investigated the leaching process and optimum conditions associated with Al removal from the cathode powder materials collected in a wet cathode-powder peeling and recycling production line of spent Li-ion batteries(LIBs).Moreover,we specifically studied the leaching of fluorine(F)synergistically happened along with the removal process of Al,which was not concerned about in other studies,but one of the key factors affecting pollution prevention in the recovery process.The mechanism of the whole process including the leaching of Al and F from the cathode powder was indicated by using NMR,FTIR,and XPS,and a defluoridation process was preliminarily investigated in this study.The leaching kinetics of Al could be successfully described by the shrinking core model,controlled by the diffusion process and the activation energy was 11.14 kJ/mol.While,the leaching of F was attributed to the dissolution of LiPF6and decomposition of PVDF,and the kinetics associated was described by Avrami model.The interaction of Al and F is advantageous to realize the defluoridation to some degree.It is expected that our investigation will provide theoretical support for the large-scale recycling of spent LIBs.展开更多
SiC particle(SiCp)/Al composite materials were fabricated via powder packed resistance seam welding additive manufacturing.The influence of welding speed on microstructure and mechanical properties of the specimen was...SiC particle(SiCp)/Al composite materials were fabricated via powder packed resistance seam welding additive manufacturing.The influence of welding speed on microstructure and mechanical properties of the specimen was investigated,elucidating the formation and fracture mechanism of single-pass multi-layer deposition.The results demonstrate that a dense internal structure of the specimen characterized by uniformly dispersed SiCp embedded within the Al matrix is formed.However,particle agglomeration and porosity defects are observed.The porosity increases with the increase in welding speed,and the microstructure of the RSAM-24 specimen has the highest density,characterized by a density of 2.706 g/cm^(3)and a porosity of 1.672%.The mechanical properties of the specimens decrease as the welding speed increases.Optimal mechanical properties are obtained when the welding speed is set as 24 cm/min.Specifically,the average hardness,tensile strength and elongation values are 463.736 MPa,52.16 MPa and 2.2%,respectively.The tensile specimens predominantly exhibit fracture along the interlayer bonding interface and the interface between the Al matrix and SiC particles,and the damage mode is ductile fracture.展开更多
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
基金supported by the National Natural Science Foundation of China(Grant No.52235006)the National Key Research and Development Program of China(Grant No.2022YFB4600500)+3 种基金the National Natural Science Foundation of China(Grant Nos.52025053 and 52105303)the Natural Science Foundation of Jilin Province(Grant No.20220101209JC)the Postdoctoral Fellow-ship Program of CPSF(Grant GZC20240587 and GZC20230944)the Graduate Innovation Fund of Jilin University(2024CX063).
文摘1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to further reduce weight,functional elements like electric actuators can be substituted with intelligent materials like shape memory alloys(SMAs)[2,3].Among SMAs,NiTi alloy stands out for its sens-ing and actuation capabilities,significantly enhancing the safety and reliability of engineering structures[4,5].Integrating Ti6Al4V and NiTi alloys within a single component holds the potential to provide precise feedback on mechanical,thermal,or environmen-tal conditions[6,7].
基金supported by the National Natural Science Foundation of China(No.U19A2046)。
文摘The types and contents of phyllosilicate minerals in soils play an important role in soil acidification,as soil acid buffering capacity varies with the composition of the phyllosilicate minerals.In addition to aluminum-oxygen(Al-O)octahedrons,a certain number of Al-O tetrahedrons exist in phyllosilicate minerals due to the isomorphic substitution of silicon ion(Si4+)by aluminum ion(Al3+)in Si-O tetrahedrons of minerals.However,the effect of the two coordination structures of Al on the release of Al during mineral acidification has not yet been investigated.Therefore,the differences in Al activation in phyllosilicate minerals and soils with different Al coordination structures were investigated through constant-p H experiments and27Al magic-angle spinning nuclear magnetic resonance(MAS-NMR)measurements.The results of27Al MAS-NMR spectra showed that kaolinite contained Al-O octahedrons,phlogopite and illite contained Al-O tetrahedrons,and vermiculite composite contained both octahedral and tetrahedral Al.At p H<5.1,the content of Al released from minerals during simulated acidification followed the order:illite>vermiculite composite>phlogopite>kaolinite,which was consistent with the orders of cation exchange capacity and content of tetrahedral Al of the minerals.According to the rate constants,the Al release rates were in the order of phlogopite>illite>vermiculite composite>kaolinite at p H 4.8.Except for phlogopite,the Al release rates in these minerals increased with decreasing suspension p H.Therefore,the Al release contents and rates were greater in phlogopite,illite,and vermiculite composite containing Al-O tetrahedrons than in kaolinite containing only Al-O octahedrons.Two Oxisols derived from basalt with different ages were selected for similar studies.The27Al MAS-NMR spectra of the Oxisols showed that the 0.01-million-year(Ma)Oxisol contained both octahedral and tetrahedral Al,while the 1.33-Ma Oxisol contained only Al-O octahedrons.The contents of both exchangeable and soluble Al released from the 0.01-Ma Oxisol were greater than those from the 1.33-Ma Oxisol when the two soils were acidified to the same p H.The results from minerals and soils confirmed that Al was more readily released into solution and exchangeable sites as soluble and exchangeable Al in Al-O tetrahedrons than in Al-O octahedrons during the acidification of soils and minerals.The findings of this study will provide useful references for investigating the mechanisms of solid phase Al release and for mitigating soil acidification and inhibiting Al activation in different soil types.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3710601)the National Natural Science Foundation of China(Grant Nos.52203385 and 52171056)+2 种基金the CNNC Science Fund for Talented Young Scholars,the Institute of Metal Research(IMR)Innovation Fund(Grant No.2021-ZD02)the Natural Science Foundation of Liaoning Province(Grant No.2022-BS-009)Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20220225).
文摘B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites.
基金the National Natural Science Foundation of China (Grant No.12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (Grant No.QNKT22-09)。
文摘A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.
基金supported by the National Natural Science Foundation of China(No.22176200)the Industrial Innovation Entrepreneurial Team Project of Ordos 2021。
文摘The high content of aluminum(Al)impurity in the recycled cathode powder seriously affects the extraction efficiency of Nickel,Cobalt,Manganese,and Lithium resources and the actual commercial value of recycled materials,so Al removal is crucially important to conform to the industrial standard of spent Li-ion battery cathode materials.In this work,we systematically investigated the leaching process and optimum conditions associated with Al removal from the cathode powder materials collected in a wet cathode-powder peeling and recycling production line of spent Li-ion batteries(LIBs).Moreover,we specifically studied the leaching of fluorine(F)synergistically happened along with the removal process of Al,which was not concerned about in other studies,but one of the key factors affecting pollution prevention in the recovery process.The mechanism of the whole process including the leaching of Al and F from the cathode powder was indicated by using NMR,FTIR,and XPS,and a defluoridation process was preliminarily investigated in this study.The leaching kinetics of Al could be successfully described by the shrinking core model,controlled by the diffusion process and the activation energy was 11.14 kJ/mol.While,the leaching of F was attributed to the dissolution of LiPF6and decomposition of PVDF,and the kinetics associated was described by Avrami model.The interaction of Al and F is advantageous to realize the defluoridation to some degree.It is expected that our investigation will provide theoretical support for the large-scale recycling of spent LIBs.
基金National Natural Science Foundation of China(52205375)Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(20204BCJ23003)Jiangxi Provincial Natural Science Foundation(20224BAB214010,20232BAB204049,jxsq2019201118)。
文摘SiC particle(SiCp)/Al composite materials were fabricated via powder packed resistance seam welding additive manufacturing.The influence of welding speed on microstructure and mechanical properties of the specimen was investigated,elucidating the formation and fracture mechanism of single-pass multi-layer deposition.The results demonstrate that a dense internal structure of the specimen characterized by uniformly dispersed SiCp embedded within the Al matrix is formed.However,particle agglomeration and porosity defects are observed.The porosity increases with the increase in welding speed,and the microstructure of the RSAM-24 specimen has the highest density,characterized by a density of 2.706 g/cm^(3)and a porosity of 1.672%.The mechanical properties of the specimens decrease as the welding speed increases.Optimal mechanical properties are obtained when the welding speed is set as 24 cm/min.Specifically,the average hardness,tensile strength and elongation values are 463.736 MPa,52.16 MPa and 2.2%,respectively.The tensile specimens predominantly exhibit fracture along the interlayer bonding interface and the interface between the Al matrix and SiC particles,and the damage mode is ductile fracture.