Alpine meadows,alpine wetlands,and alpine desert steppes are the three typical vegetation types on the Qinghai-Tibet Plateau.The complex terrain and harsh climatic conditions across this region lead to considerable di...Alpine meadows,alpine wetlands,and alpine desert steppes are the three typical vegetation types on the Qinghai-Tibet Plateau.The complex terrain and harsh climatic conditions across this region lead to considerable diversification in the vegetation growth environment,resulting in substantial spatial heterogeneity in ecosystem carbon flux and its controlling mechanisms.Using eddy covariance data collected from March to August 2019,this study examined the responses of carbon and water fluxes in different ecosystems on the Tibetan Plateau to typical hydrometeorological factors,focusing on Net Ecosystem CO□Exchange(NEE)and Evapotranspiration(ET).The results indicate that:1)The Longbao alpine wetland primarily acted as a carbon sink from May to August,while serving as a carbon source from March to April.In the Maqin alpine meadow,it functioned as a carbon sink during June and July but acted as a carbon source in March,April,May,and August.The Tuotuohe alpine desert strppe was predominantly a net carbon sink from March to August.Overall,after the entire growing season(March to August),the Longbao alpine wetlands,Maqin alpine meadow,and Tuotuohe alpine desert steppe all showed net carbon sink properties,with net CO_(2)uptakes of 236.12 g/m^(2),291.45 g/m^(2),and 290.28 g/m^(2),respectively.2)The importance of meteorological factors to NEE varies with scale and ecosystem type,with global radiation(Rg)being the most critical factor influencing NEE variation.Volumetric soil water content(Soil_VWC)and soil temperature(Soil_T)had a positive effect on NEE at Maqin alpine meadow and Tuotuohe alpine desert steppe,while higher values of these variables showed a negative contribution.Furthermore,the sensitivity of NEE to Soil_T at Longbao alpine wetland and Tuotuohe alpine desert steppe was greater than its sensitivity to air temperature(Tair).3)The effect of Gross Primary Productivity(GPP)on NEE in alpine desert steppes is significantly greater than in alpine meadows.Both Ecosystem Respiration(Reco)and NEE were substantially limited by GPP,with 84%of GPP in alpine wetlands contributing to Reco and 16%to NEE;92%of GPP in alpine meadows contributing to Reco and 8%to NEE;and 40%of GPP in high-altitude desert grasslands contributing to Reco and 60%to NEE.4)The strong correlation between NEE and evapotranspiration suggests that water availability is the primary factor controlling changes in the carbon and water budgets of alpine ecosystems.展开更多
Nitrogen(N)is an essential nutrient for both plants and soil microbes,but it often has limited availability.Currently,little is known about the effects of different vegetation patch types on the partitioning of N betw...Nitrogen(N)is an essential nutrient for both plants and soil microbes,but it often has limited availability.Currently,little is known about the effects of different vegetation patch types on the partitioning of N between plants and soil microorganisms in grassland ecosystems.In the present study,we performed a^(15)N-labelling experiment(using^(15)N-NO_(3)^(-)and^(15)N-NH_(4)^(+))to investigate N uptake by plant biomass and microbial biomass for five common vegetation patch types in a degraded alpine steppe on the Tibetan Plateau,China.The results showed that plants and soil microorganisms in all patches showed a clear preference for the uptake of NO_(3)^(-).Plants in patches dominated by palatable species absorbed more N than plants in unpalatable species patches,while N uptake in the microbial biomass in unpalatable species patches was higher than that in palatable species patches.For the two soil depths,plants in Poa litwinowiana patches had the highest N uptake(NO_(3)^(-):13.32-51.28 mg m^(-2);NH_(4)^(+):0.35-1.36 mg m^(-2)),whereas microbial biomass in Oxytropis glacialis patches had the highest N uptake(NO_(3)^(-):846.97-1,659.87 mg m^(-2);NH_(4)^(+):108.75-185.14 mg m^(-2))among the five vegetation patch types.For both forms of N,soil microorganisms acquired relatively more N than the plants in the five vegetation patch types(i.e.,the ratio of microbial biomass N uptake to plant biomass N uptake was greater than 1).The N-absorbing capacity of plants decreased,whereas the capacity of soil microorganisms to take up N increased with the degradation of vegetation patches.Microorganisms that compete more strongly for N might reduce the uptake of nutrients by plants in degraded patches,which would not be conducive to the restoration of vegetation in N-limited alpine grasslands.展开更多
Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural gr...Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural grassland(CK),and open-pit coal mine dumps in the Muli mining area of Qinghai Province were selected as research subjects for this study.The characteristics of plant diversity and community stability were measured and analyzed,and the relationships between these factors and their influencing variables were evaluated.The results indicated significant differences in the vegetation community characteristics and plant diversity among the various grasslands.Coverage,aboveground biomass,belowground biomass,soil total nitrogen,and soil total carbon were the highest when the growth period was three years.Plant diversity and community stability in the natural grassland were significantly greater than that in the artificial grassland and open-pit coal mine dumps.A significant positive correlation was observed between plant diversity and community stability,suggesting that plant diversity can serve as an index of community stability.The order of stability,from highest to lowest,was CK>11a>10a>8a>9a>6a>7a>3a>2a>1a>0a.Years were identified as the primary factors affecting plant diversity and community stability by altering the soil pH.These results elucidate the relationships and driving mechanisms between plant diversity and community stability in grasslands,providing a scientific basis for maintaining community stability in artificial grassland ecosystems in alpine mining areas.展开更多
Surface soil cracking in alpine meadows signifies the transition of degradation from quantitative accumulation to qualitative deterioration.Quantitative research remains insufficient regarding changes in the mechanica...Surface soil cracking in alpine meadows signifies the transition of degradation from quantitative accumulation to qualitative deterioration.Quantitative research remains insufficient regarding changes in the mechanical properties of degraded meadow soils and the mechanical thresholds for cracking initiation.This study explored the relationships between surface cracking and the physical properties,tensile strength,and matrix suction of root-soil composites in alpine meadow sites with different stages of degradation(undegraded(UD),lightly degraded(LD),moderately degraded(MD),and heavily degraded(HD))under different water gradients(high water content(HWC),medium water content(MWC),and low water content(LWC))corresponding to different drying durations at a constant temperature of 40.0°C.The Huangcheng Mongolian Township in Menyuan Hui Autonomous County,Qinghai Province,China was chosen as the study area.The results indicated that as the degradation degree of alpine meadow intensified,both water content of rootsoil composite and the fine grain content of soil decreased.In contrast,the root-soil mass ratio and root area ratio initially increased and then decreased with progressive degradation.Under a consistent water content,the tensile strength of root-soil composite followed a pattern of MD>HD>LD>UD.The peak displacement of tensile strength also decreased as the degradation degree of alpine meadow increased.Both the tensile strength and matrix suction of root-soil composite increased as root-soil water content decreased.A root-soil water content of 30.00%-40.00%was found to be the critical threshold for soil cracking in alpine meadows.Within this range,the matrix suction of root-soil composite ranged from 50.00 to 100.00 kPa,resulting in the formation of linear cracks in the surface soil.As the root-soil water content continued to decrease,liner cracks evolved into branch-like and polygonal patterns.The findings of this study provide essential data for improving the mechanical understanding of grassland cracking and its development process.展开更多
The geogenic enrichment of arsenic(As)extensively occurred in the riverine systems from the Qinghai-Tibetan Plateau under active geothermal discharge and chemical weathering conditions,while little is known about how ...The geogenic enrichment of arsenic(As)extensively occurred in the riverine systems from the Qinghai-Tibetan Plateau under active geothermal discharge and chemical weathering conditions,while little is known about how dissolved organic matter(DOM)transformation regulates the aquatic As concentrations.The present study revealed that the DOM components from the Singe Tsangpo River(STR)basin primarily consisted of protein-like components(81.30%±6.48%),with the microbially-endogenous production being a predominant source under the control of temperature and glacier-runoff recharge along the river flow path.Notably,the chemical weathering processes have significantly facilitated the enhancement of humic-like components in the river water.Besides,the groundwater DOM characteristics were predominantly influenced by the mobilization of sedimentary organic matter and the introduction of allochthonous DOM resulting from surface-water recharge.Interestingly,humic-like components facilitated As enrichment through complexation and competitive adsorption effects in both surface water and groundwater under oxidizing conditions,whichwas supported by the significant positive correlations between As and humiclike component(R^(2)=0.31/0.65,P<0.05/0.01)and the concurrent mobilization of As and humic-like components from sediment incubation experiments.Moreover,the Structural Equation Modeling analysis revealed a stronger contribution of humic-like components to the As enrichment in the groundwater compared with surface water,possibly due to the relatively strongermicrobial activity and enhanced mobilization of humic-like components in alluvial aquifers.The present study thus provided new insights into the transformation of DOM and its important role in facilitating As enrichment in the aquatic environment from alpine river basins.展开更多
The effects of climatic warming on phyllosphere microbial communities remain uncertain.In this study,the effects of long-term(>10 years)experimental warming on phyllosphere epiphytic bacterial and fungal communitie...The effects of climatic warming on phyllosphere microbial communities remain uncertain.In this study,the effects of long-term(>10 years)experimental warming on phyllosphere epiphytic bacterial and fungal communities of Carex alrofusca,Kobresia pygmaea,Potentilla bifurca and Stipa capillacea were examined in the northern Xizang.Overall,warming increased bacterialα-diversity,but reduced fungalα-diversity across the four host plants.Warming altered the bacterial and fungal community compositions mainly by increasing Actinobacteria,Firmicutes and pathotrophsaprotroph fungi,and reducing Basidiomycota and symbiotroph fungi across the four host plants.Warming increased the relative effect of the‘drift&others’process in the bacterial community,but reduced the relative effect of the‘dispersal limitation’process in the bacterial community and the relative effect of the‘homogeneous selection’process in the fungal community across the four host plants.The overall warming effects on the bacterial and fungal communities may be due to overall warming effects on temperature,leaf morphology structure and physicochemical properties,ecological processes of community assembly and topological parameters of species co-occurrence networks of bacteria and fungi.Warming altered the bacterial species co-occurrence network mainly by increasing the vertex,clustering coefficient and heterogeneity,while reducing the average path length and network diameter across host species.Warming altered the fungal species co-occurrence network mainly by increasing the network diameter and reducing the vertex across host species.Warming effects on bacterial and fungal communities varied among host plants,which may be due to the diverse responses to warming of plant height,leaf malondialdehyde,ecological processes of community assembly and topological parameters of species co-occurrence network.Therefore,warming can alter phyllosphere epiphytic bacterial and fungal communities of alpine plants.Such changes varied among host plants and may cause adverse effects on the host plants.展开更多
Global warming leads to snow cover loss in the alpine ecosystem,exposing seeds to extreme diurnal temperature fluctuations during the growing season.The risk of freezing increases as seeds have increased moisture cont...Global warming leads to snow cover loss in the alpine ecosystem,exposing seeds to extreme diurnal temperature fluctuations during the growing season.The risk of freezing increases as seeds have increased moisture content.Studying the survival mechanisms of seeds at low temperatures can help analyze changes in alpine meadow populations and target conservation efforts.Here,we used three species of Poaceae as a model to understand freezing stress.Fully imbibed Elymus dahuricus,Festuca elata,and Lolium multiflorum seeds were subjected to programmed cooling at fast and slow rates(-1.0/0.05℃/min)and then assessed for survival.Differential Scanning Calorimetry was used to analyze thermal transitions during cooling.HE-stained paraffin sections and a Transmission Electron Microscope were employed to observe internal morphology and ultrastructural changes.E.dahuricus seeds exhibited greater tolerance to low temperatures than those of the other two species,with an LT_(50)of approximately-20℃for both cooling rates and maintained relatively intact ultrastructure.The observed the low-temperature exotherm(LTE)correlated with seed survival,with viability decreasing extensively below LTE.Fast cooling caused fewer changes to seed morphology and ultrastructure than slow cooling,suggesting that the primary survival mechanism during fast cooling is freezing avoidance through supercooling.Seeds exhibited greater freeze tolerance under slow than fast cooling,primarily by migrating intracellular water to extracellular spaces where it froze,causing considerable damage to cell ultrastructure and forming apparent cavities in some seeds.展开更多
In recent decades, global climate change and overgrazing have led to severe degradation of alpine meadows. Understanding the changes in soil characteristics and vegetation communities in alpine meadows with different ...In recent decades, global climate change and overgrazing have led to severe degradation of alpine meadows. Understanding the changes in soil characteristics and vegetation communities in alpine meadows with different degrees of degradation is helpful to reveal the mechanism of degradation process and take the remediation measures effectively. This study analyzed the changes in vegetation types and soil characteristics and their interrelationships under three degradation degrees, i.e., non-degradation(ND),moderate degradation(MD), and severe degradation(SD) in the alpine meadows of northeastern Qinghai-Xizang Plateau, China through the long-term observation. Results showed that the aggressive degradation changed the plant species, with the vegetation altering from leguminous and gramineous to forbs and harmful grasses. The Pielou evenness and Simpson index increased by 24.58% and 7.01%,respectively, the Shannon-Wiener index decreased by 17.52%, and the species richness index remained constant. Soil conductivity, soil organic matter, total potassium, available potassium, and porosity declined.However, the number of vegetation species increased in MD. Compared with ND, the plant diversity in MD enhanced by 8.33%, 8.69%, and 7.41% at family, genus, and species levels, respectively. In conclusion,changes in soil properties due to degradation can significantly influence the condition of above-ground vegetation. Plant diversity increases, which improves the structure of belowground network. These findings may contribute to designing better protection measures of alpine meadows against global climate change and overgrazing.展开更多
The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to...The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to reconstruct the architecture of the oceanic sector from which they derived.The collected data indicate that this oceanic crust consists of a mantle metaperidotites and metaophicalcites,both covered by massive or pillow metabasalts with or without a layer of ophiolite-bearing metabreccias.展开更多
The response of plant functional diversity to external disturbances not only effectively predicts changes in the ecosystem but it also reflects how plant communities use external environmental resources.However,resear...The response of plant functional diversity to external disturbances not only effectively predicts changes in the ecosystem but it also reflects how plant communities use external environmental resources.However,research on how different herbivore assemblages affect plant functional diversity is limited.Therefore,this study systematically explored the effects of three typical herbivore assemblages(yak grazing,Tibetan sheep grazing,and mixed grazing by yaks and Tibetan sheep)on species richness,plant functional diversity,and soil physicochemical properties in alpine grasslands on the Qinghai-Tibet Plateau,China.This study further investigated the primary mechanisms driving the changes in plant functional diversity.The results indicate four key aspects of this system:(1)Grazing significantly enhanced plant functional diversity,particularly when the mixed grazing by yaks and Tibetan sheep was applied at a ratio of 1:2.This ratio showed the most substantial improvement in the functional dispersion index and Rao's quadratic entropy index.(2)Compared to enclosed treatments,grazing increased species richness andβ-diversity,contributing to higher plant functional diversity.(3)Grazing treatments affected various plant traits,such as reducing plant community height and leaf thickness while increasing specific leaf area.However,the impact on plant functional diversity was most pronounced under the mixed grazing by yaks and Tibetan sheep at a ratio of 1:2.(4)Speciesα-diversity was positively correlated with plant functional diversity.Changes in plant functional diversity were primarily regulated by variations in soil physicochemical properties.Specifically,increases in soil available nitrogen significantly promoted changes in plant functional diversity,while increases in soil available potassium and bulk density had a significant inhibitory effect on these changes.Long-term grazing significantly reduced the height of plant communities in alpine meadows,while a balanced mixture of yak and Tibetan sheep grazing,especially at a ratio of 1:2,enhanced plant functional diversity the most.This suggests that,under these conditions,the use of external environmental resources by the plant community is optimized.展开更多
The western alpine region is an important freshwater supply and water conservation area for China and its surrounding areas.As ecological civilization construction progresses,the ecohydrology of the western alpine reg...The western alpine region is an important freshwater supply and water conservation area for China and its surrounding areas.As ecological civilization construction progresses,the ecohydrology of the western alpine region in China,which is a crucial ecological barrier,has undergone significant changes.In this study,we collected 1077 sampling points and presented a comprehensive overview of research results pertaining to the hydrochemistry of river water,meltwater,groundwater,and precipitation in the western alpine region of China using piper diagram,end-member diagram,and hydrological process indication.Water resources in the western alpine region of China were found to be weakly alkaline and have low total dissolved solids(TDS).The mean pH values for river water,meltwater,groundwater,and precipitation are 7.92,7.58,7.72,and 7.32,respectively.The mean TDS values for river water,meltwater,groundwater,and precipitation are 280.99,72.48,544.41,and 67.68 mg/L.The hydrochemical characteristics of the water resources in this region exhibit significant spatial and temporal variability.These characteristics include higher ion concentrations during the freezing period and higher ion concentrations in inland river basins,such as the Shule River Basin and Tarim River Basin.The principal hydrochemical type of river water and meltwater is HCO^(3-)•SO_(4)^(2-)-Ca^(2+),whereas the principal cations in groundwater are Mg^(2+)and Ca^(2+),and the principal anions are HCO^(3-)and SO_(4)^(2-).In terms of precipitation,the principal hydrochemical type is SO_(4)^(2-)-Ca^(2+).The chemical ions in river water and groundwater are primarily influenced by rock weathering and evaporation-crystallization,whereas the chemical ions in meltwater are mainly affected by rock weathering and atmospheric precipitation,and the chemical ions in precipitation are derived primarily from terrestrial sources.The main forms of water input in the western alpine region of China are precipitation and meltwater,and mutual recharge occurs between river water and groundwater.Hydrochemical characteristics can reflect the impact of human activities on water resources.By synthesizing the regional hydrochemical studies,our findings provide insights for water resources management and ecological security construction in the western alpine region in China.展开更多
In recent years,many studies have focused on the effects of global climate warming and increased nitrogen deposition on the structure and function of grassland ecosystem.However,there are still significant uncertainti...In recent years,many studies have focused on the effects of global climate warming and increased nitrogen deposition on the structure and function of grassland ecosystem.However,there are still significant uncertainties in the response mechanism of stability of plant community biomass in alpine meadows of the Qinghai-Xizang Plateau,China to these two major climate factors.Given this,based on field control experiments,this study systematically evaluated the effects of different levels of climate warming(W0(no warming),W1(air temperature increased by 0.47℃ or soil temperature increased by 0.61℃),W2(air temperature increased by 0.92℃ or soil temperature increased by 1.09℃),W3(air temperature increased by 1.44℃ or soil temperature increased by 1.95℃)),nitrogen deposition(N0(0 kg N/(hm^(2)·a)),N16(16 kg N/(hm^(2)·a)),and N32(32 kg N/(hm^(2)·a))),and their interactions on plant community biomass and its temporal stability,and explored its potential regulatory mechanisms.The results showed that the biomass of total community,Gramineae,and dominant species increased significantly with increasing temperature,but the biomass of common and rare species decreased significantly.Nitrogen deposition also significantly promoted the biomass accumulation of community and gramineous plants.Under the treatment of W3N32,the biomass of plant community,Gramineae,and dominant species reached the highest values,indicating that there was a synergistic effect under this treatment.Structural equation model showed that increasing temperature significantly decreased the stability of plant community biomass by reducing the stability of grass and dominant species biomass and weakening species asynchronism.Interaction of increased nitrogen deposition and temperature increased the biomass fluctuation of grass functional group,thus amplifying its negative influence on community stability.More attention should be paid to the response and regulatory mechanisms of dominant species and functional groups under global climate change.This study provides a theoretical basis for revealing the stability maintenance mechanism of alpine grassland and also provides scientific support for the development of future grassland ecosystem management and assessment.展开更多
Tibetan alpine steppes are large and sensitive terrestrial carbon(C)reservoirs that are experiencing desertification due to global change and overgrazing,which can lead to stronger resource limitations for both above-...Tibetan alpine steppes are large and sensitive terrestrial carbon(C)reservoirs that are experiencing desertification due to global change and overgrazing,which can lead to stronger resource limitations for both above-and belowground communities.Soil nutrients,especially nitrogen(N)and phosphorus(P),are the crucial resources for plant growth and microbial metabolism.However,whether both plant and soil microbial communities in the degraded alpine steppes are limited by these soil nutrients remains unclear,which limits our understanding of the mechanisms of desertification and subsequent ecosystem restoration.Here,we evaluated potential nutrient limitations of the plant and soil microbial communities in the alpine steppe across five stages of desertification using stoichiometry-based approaches.Our results showed that soil microbial metabolism was mainly limited by C and P,and the plant N limitation and microbial C limitation were intensified while the microbial P limitation was relieved during desertification.Plant-soil-microbe interactions had significant impacts on the microbial C and P limitations,explaining 72 and 61%of the variation,respectively.Specifically,desertification ultimately affected microbial metabolic limitations by regulating soil pH,soil nutrients,and the plant N limitation.Moreover,the microbial C limitation further reduced microbial C use efficiency(CUE)with desertification,which is detrimental for organic C retention in the degraded soil.Overall,this study revealed that microbial metabolic limitations through plant-microbe interactions were the key drivers affecting soil microbial CUE,and it provided insights that can advance our knowledge of the microbial regulation of nutrient cycles and C sequestration.展开更多
The source region of the Yellow River, accounting for over 38% of its total runoff, is a critical catchment area,primarily characterized by alpine grasslands. In 2005, the Maqu land surface processes observational sit...The source region of the Yellow River, accounting for over 38% of its total runoff, is a critical catchment area,primarily characterized by alpine grasslands. In 2005, the Maqu land surface processes observational site was established to monitor climate, land surface dynamics, and hydrological variability in this region. Over a 10-year period(2010–19), an extensive observational dataset was compiled, now available to the scientific community. This dataset includes comprehensive details on site characteristics, instrumentation, and data processing methods, covering meteorological and radiative fluxes, energy exchanges, soil moisture dynamics, and heat transfer properties. The dataset is particularly valuable for researchers studying land surface processes, land–atmosphere interactions, and climate modeling, and may also benefit ecological, hydrological, and water resource studies. The report ends with a discussion on perspectives and challenges of continued observational monitoring in this region, focusing on issues such as cryosphere influences, complex topography,and ecological changes like the encroachment of weeds and scrubland.展开更多
The response of N_(2)O emissions to nitrogen(N)addition is usually positive,but its response to phosphorus(P)addition varies,and the underlying mechanisms for the changes in N_(2)O emissions remain unclear.We conducte...The response of N_(2)O emissions to nitrogen(N)addition is usually positive,but its response to phosphorus(P)addition varies,and the underlying mechanisms for the changes in N_(2)O emissions remain unclear.We conducted field studies to examine the response of N_(2)O emissions to N and P addition over two years in three typical alpine grasslands,alpine meadow(AM),alpine steppe(AS),and alpine cultivated grassland(CG)on the Qinghai-Tibet Plateau(QTP).Our results showed consistent increases in N_(2)O emissions under N addition alone or with P addition,and insignificant change in N_(2)O emissions under P addition alone in all three grasslands.N addition increased N_(2)O emissions directly in AM,by lowering soil pH in AS,and by lowering abundance of denitrification genes in CG.N and P co-addition increased N_(2)O emissions in AM and AS but only showed an interactive effect in AM.P addition enhanced the increase in N_(2)O emissions caused by N addition mainly by promoting plant growth in AM.Overall,our results illustrate that short-term P addition cannot alleviate the stimulation of N_(2)O emissions by N deposition in alpine grassland ecosystems,and may even further stimulate N_(2)O emissions.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c...Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.展开更多
Ongoing encroachment is driving recent alpine shrubline dynamics globally,but the role of shrub-shrub interactions in shaping shrublines and their relationships with stem density changes remain poorly understood.Here,...Ongoing encroachment is driving recent alpine shrubline dynamics globally,but the role of shrub-shrub interactions in shaping shrublines and their relationships with stem density changes remain poorly understood.Here,the size and age of shrubs from 26 Salix shrubline populations along a 900-km latitudinal gradient(30°-38°N)were measured and mapped across the eastern Tibetan Plateau.Point pattern analyses were used to quantify the spatial distribution patterns of juveniles and adults,and to assess spatial associations between them.Mean intensity of univariate and bivariate spatial patterns was related to biotic and abiotic variables.Bivariate mark correlation functions with a quantitative mark(shrub height,basal stem diameter,crown width)were also employed to investigate the spatial relationships between shrub traits of juveniles and adults.Structural equation models were used to explore the relationships among conspecific interactions,patterns,shrub traits and recruitment dynamics under climate change.Most shrublines showed clustered patterns,suggesting the existence of conspecific facilitation.Clustered patterns of juveniles and conspecific interactions(potentially facilitation)tended to intensify with increasing soil moisture stress.Summer warming before 2010 triggered positive effects on population interactions and spatial patterns via increased shrub recruitment.However,summer warming after2010 triggered negative effects on interactions through reduced shrub recruitment.Therefore,shrub recruitment shifts under rapid climate change could impact spatial patterns,alter conspecific interactions and modify the direction and degree of shrublines responses to climate.These changes would have profound implications for the stability of alpine woody ecosystems.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
基金supported in part by the Fundamental Research Project of the Science and Technology Department of the Qinghai Province(Grant No.2025-ZJ-739)the National Natural Science Foundation of China(Grant No.U21A2021)+1 种基金the Open Fund of Greenhouse Gas and Carbon Neutral Key Laboratory of Qinghai Province(Grant No.ZDXM-2023-3)the Key Projects of Qinghai Meteorological Bureau(Grant No.QXZD2024-08)。
文摘Alpine meadows,alpine wetlands,and alpine desert steppes are the three typical vegetation types on the Qinghai-Tibet Plateau.The complex terrain and harsh climatic conditions across this region lead to considerable diversification in the vegetation growth environment,resulting in substantial spatial heterogeneity in ecosystem carbon flux and its controlling mechanisms.Using eddy covariance data collected from March to August 2019,this study examined the responses of carbon and water fluxes in different ecosystems on the Tibetan Plateau to typical hydrometeorological factors,focusing on Net Ecosystem CO□Exchange(NEE)and Evapotranspiration(ET).The results indicate that:1)The Longbao alpine wetland primarily acted as a carbon sink from May to August,while serving as a carbon source from March to April.In the Maqin alpine meadow,it functioned as a carbon sink during June and July but acted as a carbon source in March,April,May,and August.The Tuotuohe alpine desert strppe was predominantly a net carbon sink from March to August.Overall,after the entire growing season(March to August),the Longbao alpine wetlands,Maqin alpine meadow,and Tuotuohe alpine desert steppe all showed net carbon sink properties,with net CO_(2)uptakes of 236.12 g/m^(2),291.45 g/m^(2),and 290.28 g/m^(2),respectively.2)The importance of meteorological factors to NEE varies with scale and ecosystem type,with global radiation(Rg)being the most critical factor influencing NEE variation.Volumetric soil water content(Soil_VWC)and soil temperature(Soil_T)had a positive effect on NEE at Maqin alpine meadow and Tuotuohe alpine desert steppe,while higher values of these variables showed a negative contribution.Furthermore,the sensitivity of NEE to Soil_T at Longbao alpine wetland and Tuotuohe alpine desert steppe was greater than its sensitivity to air temperature(Tair).3)The effect of Gross Primary Productivity(GPP)on NEE in alpine desert steppes is significantly greater than in alpine meadows.Both Ecosystem Respiration(Reco)and NEE were substantially limited by GPP,with 84%of GPP in alpine wetlands contributing to Reco and 16%to NEE;92%of GPP in alpine meadows contributing to Reco and 8%to NEE;and 40%of GPP in high-altitude desert grasslands contributing to Reco and 60%to NEE.4)The strong correlation between NEE and evapotranspiration suggests that water availability is the primary factor controlling changes in the carbon and water budgets of alpine ecosystems.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program,China(2019QZKK0404)the National Natural Science Foundation of China(42271070)+1 种基金the West Light Scholar of Chinese Academy of Sciences(xbzg-zdsys-202202)the Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G01)。
文摘Nitrogen(N)is an essential nutrient for both plants and soil microbes,but it often has limited availability.Currently,little is known about the effects of different vegetation patch types on the partitioning of N between plants and soil microorganisms in grassland ecosystems.In the present study,we performed a^(15)N-labelling experiment(using^(15)N-NO_(3)^(-)and^(15)N-NH_(4)^(+))to investigate N uptake by plant biomass and microbial biomass for five common vegetation patch types in a degraded alpine steppe on the Tibetan Plateau,China.The results showed that plants and soil microorganisms in all patches showed a clear preference for the uptake of NO_(3)^(-).Plants in patches dominated by palatable species absorbed more N than plants in unpalatable species patches,while N uptake in the microbial biomass in unpalatable species patches was higher than that in palatable species patches.For the two soil depths,plants in Poa litwinowiana patches had the highest N uptake(NO_(3)^(-):13.32-51.28 mg m^(-2);NH_(4)^(+):0.35-1.36 mg m^(-2)),whereas microbial biomass in Oxytropis glacialis patches had the highest N uptake(NO_(3)^(-):846.97-1,659.87 mg m^(-2);NH_(4)^(+):108.75-185.14 mg m^(-2))among the five vegetation patch types.For both forms of N,soil microorganisms acquired relatively more N than the plants in the five vegetation patch types(i.e.,the ratio of microbial biomass N uptake to plant biomass N uptake was greater than 1).The N-absorbing capacity of plants decreased,whereas the capacity of soil microorganisms to take up N increased with the degradation of vegetation patches.Microorganisms that compete more strongly for N might reduce the uptake of nutrients by plants in degraded patches,which would not be conducive to the restoration of vegetation in N-limited alpine grasslands.
基金financial support provided by the Research and Application Demonstration of Native Ecological Grass Seed Breeding Technology in“Black Soil Beaches”(2024-SF-101)。
文摘Plant diversity plays a crucial role in maintaining the stability of ecological function.Based on field investigations and experimental analyses,artificial grassland plots with varying sowing times,adjacent natural grassland(CK),and open-pit coal mine dumps in the Muli mining area of Qinghai Province were selected as research subjects for this study.The characteristics of plant diversity and community stability were measured and analyzed,and the relationships between these factors and their influencing variables were evaluated.The results indicated significant differences in the vegetation community characteristics and plant diversity among the various grasslands.Coverage,aboveground biomass,belowground biomass,soil total nitrogen,and soil total carbon were the highest when the growth period was three years.Plant diversity and community stability in the natural grassland were significantly greater than that in the artificial grassland and open-pit coal mine dumps.A significant positive correlation was observed between plant diversity and community stability,suggesting that plant diversity can serve as an index of community stability.The order of stability,from highest to lowest,was CK>11a>10a>8a>9a>6a>7a>3a>2a>1a>0a.Years were identified as the primary factors affecting plant diversity and community stability by altering the soil pH.These results elucidate the relationships and driving mechanisms between plant diversity and community stability in grasslands,providing a scientific basis for maintaining community stability in artificial grassland ecosystems in alpine mining areas.
基金funded by the National Natural Science Foundation of China(42062019,42002283)。
文摘Surface soil cracking in alpine meadows signifies the transition of degradation from quantitative accumulation to qualitative deterioration.Quantitative research remains insufficient regarding changes in the mechanical properties of degraded meadow soils and the mechanical thresholds for cracking initiation.This study explored the relationships between surface cracking and the physical properties,tensile strength,and matrix suction of root-soil composites in alpine meadow sites with different stages of degradation(undegraded(UD),lightly degraded(LD),moderately degraded(MD),and heavily degraded(HD))under different water gradients(high water content(HWC),medium water content(MWC),and low water content(LWC))corresponding to different drying durations at a constant temperature of 40.0°C.The Huangcheng Mongolian Township in Menyuan Hui Autonomous County,Qinghai Province,China was chosen as the study area.The results indicated that as the degradation degree of alpine meadow intensified,both water content of rootsoil composite and the fine grain content of soil decreased.In contrast,the root-soil mass ratio and root area ratio initially increased and then decreased with progressive degradation.Under a consistent water content,the tensile strength of root-soil composite followed a pattern of MD>HD>LD>UD.The peak displacement of tensile strength also decreased as the degradation degree of alpine meadow increased.Both the tensile strength and matrix suction of root-soil composite increased as root-soil water content decreased.A root-soil water content of 30.00%-40.00%was found to be the critical threshold for soil cracking in alpine meadows.Within this range,the matrix suction of root-soil composite ranged from 50.00 to 100.00 kPa,resulting in the formation of linear cracks in the surface soil.As the root-soil water content continued to decrease,liner cracks evolved into branch-like and polygonal patterns.The findings of this study provide essential data for improving the mechanical understanding of grassland cracking and its development process.
基金supported by the National Natural Science Foundation of China(No.42107094)Sichuan Science and Technology Program(No.2023NSFSC0806)the Geology Bureau project of Xinjiang Uygur Autonomous Region(Nos.XGMB202356 and XGMB202358).
文摘The geogenic enrichment of arsenic(As)extensively occurred in the riverine systems from the Qinghai-Tibetan Plateau under active geothermal discharge and chemical weathering conditions,while little is known about how dissolved organic matter(DOM)transformation regulates the aquatic As concentrations.The present study revealed that the DOM components from the Singe Tsangpo River(STR)basin primarily consisted of protein-like components(81.30%±6.48%),with the microbially-endogenous production being a predominant source under the control of temperature and glacier-runoff recharge along the river flow path.Notably,the chemical weathering processes have significantly facilitated the enhancement of humic-like components in the river water.Besides,the groundwater DOM characteristics were predominantly influenced by the mobilization of sedimentary organic matter and the introduction of allochthonous DOM resulting from surface-water recharge.Interestingly,humic-like components facilitated As enrichment through complexation and competitive adsorption effects in both surface water and groundwater under oxidizing conditions,whichwas supported by the significant positive correlations between As and humiclike component(R^(2)=0.31/0.65,P<0.05/0.01)and the concurrent mobilization of As and humic-like components from sediment incubation experiments.Moreover,the Structural Equation Modeling analysis revealed a stronger contribution of humic-like components to the As enrichment in the groundwater compared with surface water,possibly due to the relatively strongermicrobial activity and enhanced mobilization of humic-like components in alluvial aquifers.The present study thus provided new insights into the transformation of DOM and its important role in facilitating As enrichment in the aquatic environment from alpine river basins.
基金funded by the Pilot Project of Chinese Academy of Sciences(XDA26050501)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020054)+3 种基金the National Natural Science Foundation of China(31600432)the Lhasa Science and Technology Plan Project,China(LSKJ202422)the Tibet Autonomous Region Science and Technology Project,China(XZ202401JD0029)the Construction of Zhongba County Fixed Observation and Experiment Station of First Support System for Agriculture Green Development,China。
文摘The effects of climatic warming on phyllosphere microbial communities remain uncertain.In this study,the effects of long-term(>10 years)experimental warming on phyllosphere epiphytic bacterial and fungal communities of Carex alrofusca,Kobresia pygmaea,Potentilla bifurca and Stipa capillacea were examined in the northern Xizang.Overall,warming increased bacterialα-diversity,but reduced fungalα-diversity across the four host plants.Warming altered the bacterial and fungal community compositions mainly by increasing Actinobacteria,Firmicutes and pathotrophsaprotroph fungi,and reducing Basidiomycota and symbiotroph fungi across the four host plants.Warming increased the relative effect of the‘drift&others’process in the bacterial community,but reduced the relative effect of the‘dispersal limitation’process in the bacterial community and the relative effect of the‘homogeneous selection’process in the fungal community across the four host plants.The overall warming effects on the bacterial and fungal communities may be due to overall warming effects on temperature,leaf morphology structure and physicochemical properties,ecological processes of community assembly and topological parameters of species co-occurrence networks of bacteria and fungi.Warming altered the bacterial species co-occurrence network mainly by increasing the vertex,clustering coefficient and heterogeneity,while reducing the average path length and network diameter across host species.Warming altered the fungal species co-occurrence network mainly by increasing the network diameter and reducing the vertex across host species.Warming effects on bacterial and fungal communities varied among host plants,which may be due to the diverse responses to warming of plant height,leaf malondialdehyde,ecological processes of community assembly and topological parameters of species co-occurrence network.Therefore,warming can alter phyllosphere epiphytic bacterial and fungal communities of alpine plants.Such changes varied among host plants and may cause adverse effects on the host plants.
基金supported by National Science Foundation of China(NSFC)[No.32001119].
文摘Global warming leads to snow cover loss in the alpine ecosystem,exposing seeds to extreme diurnal temperature fluctuations during the growing season.The risk of freezing increases as seeds have increased moisture content.Studying the survival mechanisms of seeds at low temperatures can help analyze changes in alpine meadow populations and target conservation efforts.Here,we used three species of Poaceae as a model to understand freezing stress.Fully imbibed Elymus dahuricus,Festuca elata,and Lolium multiflorum seeds were subjected to programmed cooling at fast and slow rates(-1.0/0.05℃/min)and then assessed for survival.Differential Scanning Calorimetry was used to analyze thermal transitions during cooling.HE-stained paraffin sections and a Transmission Electron Microscope were employed to observe internal morphology and ultrastructural changes.E.dahuricus seeds exhibited greater tolerance to low temperatures than those of the other two species,with an LT_(50)of approximately-20℃for both cooling rates and maintained relatively intact ultrastructure.The observed the low-temperature exotherm(LTE)correlated with seed survival,with viability decreasing extensively below LTE.Fast cooling caused fewer changes to seed morphology and ultrastructure than slow cooling,suggesting that the primary survival mechanism during fast cooling is freezing avoidance through supercooling.Seeds exhibited greater freeze tolerance under slow than fast cooling,primarily by migrating intracellular water to extracellular spaces where it froze,causing considerable damage to cell ultrastructure and forming apparent cavities in some seeds.
基金supported by the National Forage Industry Technology System Program (CARS-34)Grassland Ecological Restoration and Management Science and Technology Support Project of Gansu Forestry and Grassland Bureau (GSAU-TSYF-2021-011)。
文摘In recent decades, global climate change and overgrazing have led to severe degradation of alpine meadows. Understanding the changes in soil characteristics and vegetation communities in alpine meadows with different degrees of degradation is helpful to reveal the mechanism of degradation process and take the remediation measures effectively. This study analyzed the changes in vegetation types and soil characteristics and their interrelationships under three degradation degrees, i.e., non-degradation(ND),moderate degradation(MD), and severe degradation(SD) in the alpine meadows of northeastern Qinghai-Xizang Plateau, China through the long-term observation. Results showed that the aggressive degradation changed the plant species, with the vegetation altering from leguminous and gramineous to forbs and harmful grasses. The Pielou evenness and Simpson index increased by 24.58% and 7.01%,respectively, the Shannon-Wiener index decreased by 17.52%, and the species richness index remained constant. Soil conductivity, soil organic matter, total potassium, available potassium, and porosity declined.However, the number of vegetation species increased in MD. Compared with ND, the plant diversity in MD enhanced by 8.33%, 8.69%, and 7.41% at family, genus, and species levels, respectively. In conclusion,changes in soil properties due to degradation can significantly influence the condition of above-ground vegetation. Plant diversity increases, which improves the structure of belowground network. These findings may contribute to designing better protection measures of alpine meadows against global climate change and overgrazing.
基金supported by PRIN 2020 project(Resp.Michele Marroni)Claudia D’Oriano(INGV)Matteo Masotta and Danis Filimon(Earth Science Dept)are also thanked for analytical support in the laboratoriesThis work benefited from the PRA 2022 project handled by Francesca Meneghini.
文摘The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to reconstruct the architecture of the oceanic sector from which they derived.The collected data indicate that this oceanic crust consists of a mantle metaperidotites and metaophicalcites,both covered by massive or pillow metabasalts with or without a layer of ophiolite-bearing metabreccias.
基金financially supported by the National Natural Science Foundation of China(U20A2007 and 32160343)the Open Project of Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region(Qinghai University),Ministry of Education of China(2023-SJY-KF-02)the West Light Foundation of the Chinese Academy of Sciences。
文摘The response of plant functional diversity to external disturbances not only effectively predicts changes in the ecosystem but it also reflects how plant communities use external environmental resources.However,research on how different herbivore assemblages affect plant functional diversity is limited.Therefore,this study systematically explored the effects of three typical herbivore assemblages(yak grazing,Tibetan sheep grazing,and mixed grazing by yaks and Tibetan sheep)on species richness,plant functional diversity,and soil physicochemical properties in alpine grasslands on the Qinghai-Tibet Plateau,China.This study further investigated the primary mechanisms driving the changes in plant functional diversity.The results indicate four key aspects of this system:(1)Grazing significantly enhanced plant functional diversity,particularly when the mixed grazing by yaks and Tibetan sheep was applied at a ratio of 1:2.This ratio showed the most substantial improvement in the functional dispersion index and Rao's quadratic entropy index.(2)Compared to enclosed treatments,grazing increased species richness andβ-diversity,contributing to higher plant functional diversity.(3)Grazing treatments affected various plant traits,such as reducing plant community height and leaf thickness while increasing specific leaf area.However,the impact on plant functional diversity was most pronounced under the mixed grazing by yaks and Tibetan sheep at a ratio of 1:2.(4)Speciesα-diversity was positively correlated with plant functional diversity.Changes in plant functional diversity were primarily regulated by variations in soil physicochemical properties.Specifically,increases in soil available nitrogen significantly promoted changes in plant functional diversity,while increases in soil available potassium and bulk density had a significant inhibitory effect on these changes.Long-term grazing significantly reduced the height of plant communities in alpine meadows,while a balanced mixture of yak and Tibetan sheep grazing,especially at a ratio of 1:2,enhanced plant functional diversity the most.This suggests that,under these conditions,the use of external environmental resources by the plant community is optimized.
基金supported by the National Science Foundation for Distinguished Young Scholars (42425107)the Top Talent Project of Gansu province, Chinese Academy of Sciences Young Crossover Team Project (JCTD-2022-18)+5 种基金the "Western Light"-Key Laboratory Cooperative Research Cross-Team Project of Chinese Academy of Sciencesthe Ecological Civilization Special Project of Key Research and Development Program in Gansu Province (24YFFA009)the Gansu Science and Technology Program (25RCKA026)the Science and Technology Project of Lanzhou (2022-2-43)the Excellent Doctoral Program in Gansu Province (23JRRA573)the Lanzhou Talent-Driven City Development Initiative.
文摘The western alpine region is an important freshwater supply and water conservation area for China and its surrounding areas.As ecological civilization construction progresses,the ecohydrology of the western alpine region in China,which is a crucial ecological barrier,has undergone significant changes.In this study,we collected 1077 sampling points and presented a comprehensive overview of research results pertaining to the hydrochemistry of river water,meltwater,groundwater,and precipitation in the western alpine region of China using piper diagram,end-member diagram,and hydrological process indication.Water resources in the western alpine region of China were found to be weakly alkaline and have low total dissolved solids(TDS).The mean pH values for river water,meltwater,groundwater,and precipitation are 7.92,7.58,7.72,and 7.32,respectively.The mean TDS values for river water,meltwater,groundwater,and precipitation are 280.99,72.48,544.41,and 67.68 mg/L.The hydrochemical characteristics of the water resources in this region exhibit significant spatial and temporal variability.These characteristics include higher ion concentrations during the freezing period and higher ion concentrations in inland river basins,such as the Shule River Basin and Tarim River Basin.The principal hydrochemical type of river water and meltwater is HCO^(3-)•SO_(4)^(2-)-Ca^(2+),whereas the principal cations in groundwater are Mg^(2+)and Ca^(2+),and the principal anions are HCO^(3-)and SO_(4)^(2-).In terms of precipitation,the principal hydrochemical type is SO_(4)^(2-)-Ca^(2+).The chemical ions in river water and groundwater are primarily influenced by rock weathering and evaporation-crystallization,whereas the chemical ions in meltwater are mainly affected by rock weathering and atmospheric precipitation,and the chemical ions in precipitation are derived primarily from terrestrial sources.The main forms of water input in the western alpine region of China are precipitation and meltwater,and mutual recharge occurs between river water and groundwater.Hydrochemical characteristics can reflect the impact of human activities on water resources.By synthesizing the regional hydrochemical studies,our findings provide insights for water resources management and ecological security construction in the western alpine region in China.
基金supported by the Key Research and Development and Transformation Plan of Qinghai Provincial Science and Technology Department(2024-NK-137)the Qinghai Province Science and Technology Commissioner Special Project(2024-NK-P28).
文摘In recent years,many studies have focused on the effects of global climate warming and increased nitrogen deposition on the structure and function of grassland ecosystem.However,there are still significant uncertainties in the response mechanism of stability of plant community biomass in alpine meadows of the Qinghai-Xizang Plateau,China to these two major climate factors.Given this,based on field control experiments,this study systematically evaluated the effects of different levels of climate warming(W0(no warming),W1(air temperature increased by 0.47℃ or soil temperature increased by 0.61℃),W2(air temperature increased by 0.92℃ or soil temperature increased by 1.09℃),W3(air temperature increased by 1.44℃ or soil temperature increased by 1.95℃)),nitrogen deposition(N0(0 kg N/(hm^(2)·a)),N16(16 kg N/(hm^(2)·a)),and N32(32 kg N/(hm^(2)·a))),and their interactions on plant community biomass and its temporal stability,and explored its potential regulatory mechanisms.The results showed that the biomass of total community,Gramineae,and dominant species increased significantly with increasing temperature,but the biomass of common and rare species decreased significantly.Nitrogen deposition also significantly promoted the biomass accumulation of community and gramineous plants.Under the treatment of W3N32,the biomass of plant community,Gramineae,and dominant species reached the highest values,indicating that there was a synergistic effect under this treatment.Structural equation model showed that increasing temperature significantly decreased the stability of plant community biomass by reducing the stability of grass and dominant species biomass and weakening species asynchronism.Interaction of increased nitrogen deposition and temperature increased the biomass fluctuation of grass functional group,thus amplifying its negative influence on community stability.More attention should be paid to the response and regulatory mechanisms of dominant species and functional groups under global climate change.This study provides a theoretical basis for revealing the stability maintenance mechanism of alpine grassland and also provides scientific support for the development of future grassland ecosystem management and assessment.
基金supported by the National Key Research and Development Program of China(2023YFF1304304)。
文摘Tibetan alpine steppes are large and sensitive terrestrial carbon(C)reservoirs that are experiencing desertification due to global change and overgrazing,which can lead to stronger resource limitations for both above-and belowground communities.Soil nutrients,especially nitrogen(N)and phosphorus(P),are the crucial resources for plant growth and microbial metabolism.However,whether both plant and soil microbial communities in the degraded alpine steppes are limited by these soil nutrients remains unclear,which limits our understanding of the mechanisms of desertification and subsequent ecosystem restoration.Here,we evaluated potential nutrient limitations of the plant and soil microbial communities in the alpine steppe across five stages of desertification using stoichiometry-based approaches.Our results showed that soil microbial metabolism was mainly limited by C and P,and the plant N limitation and microbial C limitation were intensified while the microbial P limitation was relieved during desertification.Plant-soil-microbe interactions had significant impacts on the microbial C and P limitations,explaining 72 and 61%of the variation,respectively.Specifically,desertification ultimately affected microbial metabolic limitations by regulating soil pH,soil nutrients,and the plant N limitation.Moreover,the microbial C limitation further reduced microbial C use efficiency(CUE)with desertification,which is detrimental for organic C retention in the degraded soil.Overall,this study revealed that microbial metabolic limitations through plant-microbe interactions were the key drivers affecting soil microbial CUE,and it provided insights that can advance our knowledge of the microbial regulation of nutrient cycles and C sequestration.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No.42325502)the 2nd Scientific Expedition to the Qinghai–Tibet Plateau (Grant No.2019QZKK0102)+3 种基金the West Light Foundation of the Chinese Academy of Sciences (Grant No.xbzg-zdsys-202215)the Science and Technology Research Plan of Gansu Province (Grant Nos.23JRRA654 and 20JR10RA070)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.QCH2019004)iLEAPS (integrated Land Ecosystem–Atmosphere Processes Study)。
文摘The source region of the Yellow River, accounting for over 38% of its total runoff, is a critical catchment area,primarily characterized by alpine grasslands. In 2005, the Maqu land surface processes observational site was established to monitor climate, land surface dynamics, and hydrological variability in this region. Over a 10-year period(2010–19), an extensive observational dataset was compiled, now available to the scientific community. This dataset includes comprehensive details on site characteristics, instrumentation, and data processing methods, covering meteorological and radiative fluxes, energy exchanges, soil moisture dynamics, and heat transfer properties. The dataset is particularly valuable for researchers studying land surface processes, land–atmosphere interactions, and climate modeling, and may also benefit ecological, hydrological, and water resource studies. The report ends with a discussion on perspectives and challenges of continued observational monitoring in this region, focusing on issues such as cryosphere influences, complex topography,and ecological changes like the encroachment of weeds and scrubland.
基金funded by the National Key R&D Program of China(2021YFE0112400 and 2023YFF1304303)the National Natural Science Foundation of China(32361143870 and 32101315)。
文摘The response of N_(2)O emissions to nitrogen(N)addition is usually positive,but its response to phosphorus(P)addition varies,and the underlying mechanisms for the changes in N_(2)O emissions remain unclear.We conducted field studies to examine the response of N_(2)O emissions to N and P addition over two years in three typical alpine grasslands,alpine meadow(AM),alpine steppe(AS),and alpine cultivated grassland(CG)on the Qinghai-Tibet Plateau(QTP).Our results showed consistent increases in N_(2)O emissions under N addition alone or with P addition,and insignificant change in N_(2)O emissions under P addition alone in all three grasslands.N addition increased N_(2)O emissions directly in AM,by lowering soil pH in AS,and by lowering abundance of denitrification genes in CG.N and P co-addition increased N_(2)O emissions in AM and AS but only showed an interactive effect in AM.P addition enhanced the increase in N_(2)O emissions caused by N addition mainly by promoting plant growth in AM.Overall,our results illustrate that short-term P addition cannot alleviate the stimulation of N_(2)O emissions by N deposition in alpine grassland ecosystems,and may even further stimulate N_(2)O emissions.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金This study was funded by the National Natural Science Foundation of China(42062019,42002283)the Project of Qinghai Science&Technology Department(2021-ZJ-927).
文摘Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks.
基金the National Natural Science Foundation of China(42271054)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0301)。
文摘Ongoing encroachment is driving recent alpine shrubline dynamics globally,but the role of shrub-shrub interactions in shaping shrublines and their relationships with stem density changes remain poorly understood.Here,the size and age of shrubs from 26 Salix shrubline populations along a 900-km latitudinal gradient(30°-38°N)were measured and mapped across the eastern Tibetan Plateau.Point pattern analyses were used to quantify the spatial distribution patterns of juveniles and adults,and to assess spatial associations between them.Mean intensity of univariate and bivariate spatial patterns was related to biotic and abiotic variables.Bivariate mark correlation functions with a quantitative mark(shrub height,basal stem diameter,crown width)were also employed to investigate the spatial relationships between shrub traits of juveniles and adults.Structural equation models were used to explore the relationships among conspecific interactions,patterns,shrub traits and recruitment dynamics under climate change.Most shrublines showed clustered patterns,suggesting the existence of conspecific facilitation.Clustered patterns of juveniles and conspecific interactions(potentially facilitation)tended to intensify with increasing soil moisture stress.Summer warming before 2010 triggered positive effects on population interactions and spatial patterns via increased shrub recruitment.However,summer warming after2010 triggered negative effects on interactions through reduced shrub recruitment.Therefore,shrub recruitment shifts under rapid climate change could impact spatial patterns,alter conspecific interactions and modify the direction and degree of shrublines responses to climate.These changes would have profound implications for the stability of alpine woody ecosystems.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.