期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
AlphaFold3:应用和性能见解概述
1
作者 吕新军(编译) 《中华实验和临床病毒学杂志》 2025年第5期555-555,共1页
解析蛋白质结构的X射线晶体学、NMR和cryo-EM等实验技术既昂贵又耗时,应用受到很大的局限。为了弥合蛋白质序列与其结构之间的差距,计算方法已成为必不可少的工具。传统方法(例如同源建模,线程和从头折叠)取得了进展,但通常缺乏原子级... 解析蛋白质结构的X射线晶体学、NMR和cryo-EM等实验技术既昂贵又耗时,应用受到很大的局限。为了弥合蛋白质序列与其结构之间的差距,计算方法已成为必不可少的工具。传统方法(例如同源建模,线程和从头折叠)取得了进展,但通常缺乏原子级精度。近年来,蛋白质结构预测取得了重大进展。基于深度学习的模型(例如AlphaFold2、RoseTTAFold和OpenFold)彻底改变了该领域,这些模型在预测蛋白质结构方面表现出前所未有的准确性。这些人工智能(artificial intelligence,AI)驱动的模型利用大量数据集和神经网络生成高度可靠的结构预测,有时可与实验方法相媲美。这些模型在药物发现、酶工程和疾病相关蛋白质建模等领域具有广泛的应用。 展开更多
关键词 cryo-EM alphafold3 蛋白质结构预测 深度学习
原文传递
基于转录组和AlphaFold对稻瘟菌经典效应蛋白和水稻受体的快速鉴定
2
作者 凤舞剑 冼晓青 +2 位作者 张新钵 曹丹 强承魁 《作物学报》 北大核心 2025年第6期1480-1488,I0005-I0010,共15页
效应蛋白是植物病原菌克服植物免疫的重要武器,病原菌在侵染初期与植物的斗争中会分泌不同类型的效应子。为了鉴定病原菌关键的经典效应蛋白和与植物互作的靶基因,拟通过生物信息学和结构生物学建立经典效应蛋白和靶标蛋白的鉴定方案。... 效应蛋白是植物病原菌克服植物免疫的重要武器,病原菌在侵染初期与植物的斗争中会分泌不同类型的效应子。为了鉴定病原菌关键的经典效应蛋白和与植物互作的靶基因,拟通过生物信息学和结构生物学建立经典效应蛋白和靶标蛋白的鉴定方案。以稻瘟病菌和水稻为对象,运用SignalP、TMHMM、PredGPI、PSORT和EffectorP在稻瘟病菌中共鉴定到535个效应蛋白,主要分为5类。利用稻瘟病菌-水稻互作转录组共鉴定到282个关键效应蛋白,并构建了稻瘟病菌-水稻的早期效应蛋白-植物互作的共表达网络。利用AlphaFold3预测发现水稻Os06t0633800和Os03t0114400蛋白可能分别为稻瘟病菌MGG_08817和MGG_03865的潜在靶标。利用荧光素酶互作验证发现MGG_08817与Os06t0633800、MGG_03865与Os03t0114400在烟草中存在互作。病原菌效应蛋白和靶标蛋白的快速筛选和鉴定对于植物病害的防治具有重要意义,该研究成果将有助于鉴定和挖掘重要的病原菌效应蛋白和植物靶基因,为植物病原菌互作的深入研究提供理论依据,为植物病害的绿色防控奠定基础。 展开更多
关键词 效应蛋白 稻瘟病菌 生物信息学 alphafold3 结构生物学
在线阅读 下载PDF
基于转录组和AlphaFold快速鉴定水稻特异性响应稻瘟病菌侵染的转录因子和靶标
3
作者 凤舞剑 张莹 +1 位作者 韩波 强承魁 《江苏农业科学》 北大核心 2025年第4期23-30,共8页
转录因子是调控植物免疫响应的关键因子之一。为鉴定水稻早期响应稻瘟病菌侵染的关键转录因子及相互作用的靶基因,探究早期病原菌诱导型转录因子的调控功能,为水稻的免疫机制研究和抗病种质创制提供理论依据,利用生物信息学方法对水稻... 转录因子是调控植物免疫响应的关键因子之一。为鉴定水稻早期响应稻瘟病菌侵染的关键转录因子及相互作用的靶基因,探究早期病原菌诱导型转录因子的调控功能,为水稻的免疫机制研究和抗病种质创制提供理论依据,利用生物信息学方法对水稻基因组中的转录因子进行鉴定,通过水稻-稻瘟病菌互作转录组和Mfuzz表达模式特征分析,筛选受稻瘟病菌诱导的转录因子和参与调控的功能。利用AlphaFold3对关键的转录因子和靶基因构建蛋白-DNA相互作用的复合体模型,并对转录因子潜在的结合靶标进行筛选。结果在水稻中总共鉴定到1948个转录因子,约89类转录因子。其中1、3、2、6号染色体的转录因子数目较多,分别为279、250、235、176个。共鉴定到673个转录因子受稻瘟病菌侵染水稻诱导,其中主要包含11%的WRKY、11%的MYB和11%的C2H2转录因子。这些转录因子主要调控植物信号转导、植物-病原菌的相互作用和MAPK信号、响应乙烯、响应水杨酸、响应茉莉酸、天然免疫和对细菌的防御响应等功能;鉴定到集合1和集合6中的转录因子受病原菌特异性诱导后表达量持续增加;利用AlphaFold3发现Os5t0343400编码的WRKY转录因子与SIB1基因启动子存在互作。结果表明,水稻在响应稻瘟病菌早期侵染中,约172个转录因子通过调控激素和免疫防御等途径响应稻瘟病菌的侵染,并预测到1个响应病原菌的转录因子及作用靶标在水稻免疫响应中发挥重要作用。 展开更多
关键词 转录因子 稻瘟病菌 水稻 alphafold3 作用靶标
在线阅读 下载PDF
人工智能驱动药物研发进展
4
作者 何欣恒 高斯涵 +1 位作者 李俊睿 徐华强 《科技导报》 北大核心 2025年第12期29-37,共9页
药物研发作为现代医药产业的核心驱动力,面临传统模式“高投入、长周期、低产出”的困境,亟需突破以应对日益复杂的健康需求。人工智能(AI)技术的快速发展为药物研发带来了革命性变革,其在蛋白质结构预测、蛋白质设计、抗体药物设计及... 药物研发作为现代医药产业的核心驱动力,面临传统模式“高投入、长周期、低产出”的困境,亟需突破以应对日益复杂的健康需求。人工智能(AI)技术的快速发展为药物研发带来了革命性变革,其在蛋白质结构预测、蛋白质设计、抗体药物设计及小分子药物设计等领域的应用显著提升了研发效率与成功率。深入分析了AI在蛋白质结构预测中的突破及其在靶点发现、虚拟筛选等环节的应用潜力;探讨了AI驱动蛋白质设计从结构预测到功能创新的闭环模式;剖析了AI在抗体序列优化、亲和力成熟及新型抗体设计中的作用;梳理了AI在小分子药物靶点识别、虚拟筛选及ADMET优化中的最新成果。指出AI应用中面临的数据质量、模型可解释性及实验验证等挑战,并展望了多模态数据融合、动态行为预测及自动化平台的未来发展方向。通过全面剖析AI赋能药物研发的现状与问题,旨在为加速新药创制、提升人类健康福祉提供科学视角与思考启示,提供一个关于AI赋能药物研发领域科技问题的全面且深入的视角,并激发对未来发展方向的思考,以期促进AI技术在药物研发领域的更有效应用,加速新药创制进程,最终惠及人类健康。 展开更多
关键词 人工智能 药物研发 alphafold3 蛋白质设计 抗体设计 小分子药物设计
原文传递
烟酰胺腺嘌呤二核苷酸(NAD^(+))耗竭系统相关DSR1蛋白的表达及功能预测
5
作者 花蕾 刘嘉瑶 +1 位作者 李帛伦 尚坤 《中国病原生物学杂志》 北大核心 2025年第8期971-975,共5页
目的了解NAD^(+)系统相关DSR1蛋白的结构功能。方法PCR扩增获得DSR1相关目的基因,将目的基因克隆至pET28a-SUMO载体上,构建pET28a-SUMO-DSR1质粒,将质粒转化到大肠埃希菌表达菌株中,经过异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达,利用镍... 目的了解NAD^(+)系统相关DSR1蛋白的结构功能。方法PCR扩增获得DSR1相关目的基因,将目的基因克隆至pET28a-SUMO载体上,构建pET28a-SUMO-DSR1质粒,将质粒转化到大肠埃希菌表达菌株中,经过异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达,利用镍柱层析柱和离子交换法纯化目的蛋白,经12%SDS-PAGE鉴定蛋白纯度,并通过生物信息学软件和AlphaFold3对目标分子的结构功能进行预测。结果成功构建pET28a-SUMO-DSR1质粒,并通过大肠埃希菌表达系统成功表达并纯化出DSR1蛋白,蛋白大小为142 ku。pET28a-SUMO-DSR1蛋白分子质量单位326212.22,等电点为4.80,不稳定性指数计算为42.58,脂肪族指数为32.63,消光系数为50375 L/(mol·cm),体外半衰期为4.4 h。蛋白无跨膜螺旋结构,无信号肽,二级结构存在α-螺旋(54%)和β-折叠(4%)与无规则卷曲(42%)。AlphaFold3预测的蛋白结构pLDDT评分为0.78,pTM值为0.76,该模型质量较高。预测到的DSR1蛋白与已知的DSR2蛋白结构进行比较,尽管均含有SIR2结构域,其整体的相似度极低,二者结构RMSD=45.2A,TM评分为0.17,说明DSR1可能使用与DSR2不同的作用机制引发诱发NAD+耗竭。结论成功在原核表达系统中表达并纯化出了pET28a-SUMO-DSR1蛋白,为后续通过Cryo-EM解析DSR1的结构揭示DSR1防御系统的作用机制提供了基础。 展开更多
关键词 原核表达 DSR防御系统 蛋白纯化 alphafold3结构预测 功能预测
原文传递
Favipiravir-RTP as a Potential Therapeutic Agent for Inhibiting Dengue Virus Replication
6
作者 Pui-Jen Tsai 《Journal of Biosciences and Medicines》 2025年第2期268-286,共19页
Currently, no clinically approved therapeutic drugs specifically target dengue virus infections. This study aims to evaluate the potential of antiviral drugs originally developed for other purposes as viable candidate... Currently, no clinically approved therapeutic drugs specifically target dengue virus infections. This study aims to evaluate the potential of antiviral drugs originally developed for other purposes as viable candidates for combating dengue virus. The RNA-elongating NS5-NS3 complex is a critical molecular structure responsible for dengue virus replication. Using the cryo-electron microscopy (Cryo-EM) structures available in the Protein Data Bank and AlphaFold 3 predictions, this study simulated the replication complexes of dengue virus serotypes 1, 2, 3, and 4. The RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein within the NS5-NS3 complex was selected as the molecular docking template. Molecular docking simulations were conducted using AutoDock4. Seven small molecules—AT-9010, RK-0404678, Oseltamivir, Remdesivir, Favipiravir-RTP, Abacavir, and Ribavirin—were assessed for binding affinity by calculating their binding energies, where lower values indicate stronger molecular interactions. Based on published data, antiviral replication assays were conducted for the four dengue virus serotypes. AT-9010 and RK-0404678 were used as benchmarks for antiviral replication efficacy, while Oseltamivir served as the control group. The Mann-Whitney U test was employed to classify the clinical antiviral candidates—Remdesivir, Favipiravir-RTP, Abacavir, and Ribavirin. Results demonstrated that among the four small molecules, Favipiravir-RTP exhibited the highest binding affinity with the RdRp domain of the NS5-NS3 complex across all four dengue virus serotypes. Statistical classification revealed that in five simulated scenarios—including the four virus serotypes and Cryo-EM structural data—Favipiravir-RTP shared three classifications with the benchmark molecule AT-9010. Based on these findings, Favipiravir-RTP, a broad-spectrum antiviral agent, shows potential as a therapeutic option for inhibiting dengue virus replication. However, further clinical trials are necessary to validate their efficacy in humans. 展开更多
关键词 DENGUE Antiviral Drugs Favipiravir AlphaFold 3 Molecular Docking
暂未订购
EvoNB: A protein language model-based workflow for nanobody mutation prediction and optimization
7
作者 Danyang Xiong Yongfan Ming +7 位作者 Yuting Li Shuhan Li Kexin Chen Jinfeng Liu Lili Duan Honglin Li Min Li Xiao He 《Journal of Pharmaceutical Analysis》 2025年第6期1334-1343,共10页
The identification and optimization of mutations in nanobodies are crucial for enhancing their thera-peutic potential in disease prevention and control.However,this process is often complex and time-consuming,which li... The identification and optimization of mutations in nanobodies are crucial for enhancing their thera-peutic potential in disease prevention and control.However,this process is often complex and time-consuming,which limit its widespread application in practice.In this study,we developed a work-flow,named Evolutionary-Nanobody(EvoNB),to predict key mutation sites of nanobodies by combining protein language models(PLMs)and molecular dynamic(MD)simulations.By fine-tuning the ESM2 model on a large-scale nanobody dataset,the ability of EvoNB to capture specific sequence features of nanobodies was significantly enhanced.The fine-tuned EvoNB model demonstrated higher predictive accuracy in the conserved framework and highly variable complementarity-determining regions of nanobodies.Additionally,we selected four widely representative nanobodyeantigen complexes to verify the predicted effects of mutations.MD simulations analyzed the energy changes caused by these mu-tations to predict their impact on binding affinity to the targets.The results showed that multiple mu-tations screened by EvoNB significantly enhanced the binding affinity between nanobody and its target,further validating the potential of this workflow for designing and optimizing nanobody mutations.Additionally,sequence-based predictions are generally less dependent on structural absence,allowing them to be more easily integrated with tools for structural predictions,such as AlphaFold 3.Through mutation prediction and systematic analysis of key sites,we can quickly predict the most promising variants for experimental validation without relying on traditional evolutionary or selection processes.The EvoNB workflow provides an effective tool for the rapid optimization of nanobodies and facilitates the application of PLMs in the biomedical field. 展开更多
关键词 NANOBODY Protein language models(PLMs) ESM2 model Evolutionary-nanobody(EvoNB) MD simulations AlphaFold 3
在线阅读 下载PDF
基于AlphaFold 3的农业技术人员赋能路径研究
8
作者 乔胜秋 《现代农业科技》 2025年第14期218-220,共3页
AlphaFold 3是一种基于人工智能的先进蛋白质结构预测工具,在农业领域的应用潜力巨大。传统农业技术人员受限于自身知识结构和技能储备,难以快速适应AlphaFold 3的应用需求。针对这一情况,介绍了AlphaFold 3在农业领域的应用,探讨了基于... AlphaFold 3是一种基于人工智能的先进蛋白质结构预测工具,在农业领域的应用潜力巨大。传统农业技术人员受限于自身知识结构和技能储备,难以快速适应AlphaFold 3的应用需求。针对这一情况,介绍了AlphaFold 3在农业领域的应用,探讨了基于AlphaFold 3的农业技术人员赋能路径,具体包括构建技术能力提升体系和建立长效发展机制2个方面的内容,以期为进一步促进AlphaFold 3的推广应用提供科学参考。 展开更多
关键词 AlphaFold 3 农业技术人员 赋能路径
在线阅读 下载PDF
Predictions in Clinical Efficiency of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp) Inhibitors by Molecular Docking
9
作者 Pui-Jen Tsai 《Journal of Biosciences and Medicines》 2024年第10期178-196,共19页
This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the... This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process. 展开更多
关键词 AlphaFold 3 RNA-Dependent RNA Polymerase Anti-Viral Drugs Molecular Docking
暂未订购
AlphaFold 3:an unprecedent opportunity for fundamental research and drug development 被引量:1
10
作者 Ziqi Fang Hongbiao Ran +4 位作者 YongHan Zhang Chensong Chen Ping Lin Xiang Zhang Min Wu 《Precision Clinical Medicine》 2025年第3期198-215,共18页
AlphaFold3(AF3),as the latest generation of artificial intelligence model jointly developed by Google DeepMind and Isomorphic Labs,has been widely heralded in the scientific research community since its launch.With un... AlphaFold3(AF3),as the latest generation of artificial intelligence model jointly developed by Google DeepMind and Isomorphic Labs,has been widely heralded in the scientific research community since its launch.With unprecedented accuracy,the AF3 model may successfully predict the structure and interactions of virtually all biomolecules,including proteins,ligands,nucleic acids,ions,etc.By accurately simulating the structural information and interactions of biomacromolecules,it has shown great potential in many aspects of structural prediction,mechanism research,drug design,protein engineering,vaccine development,and precision therapy.In order to further understand the characteristics of AF3 and accelerate its promotion,this article sets out to address the development process,working principle,and application in drugs and biomedicine,especially focusing on the intricate differences and some potential pitfalls compared to other deep learning models.We explain how a structure-prediction tool can impact many research fields,and in particular revolutionize the strategies for designing of effective next generation vaccines and chemical and biological drugs. 展开更多
关键词 alphafold3 artificial intelligence structure prediction drug design biomedical research
原文传递
基于AlphaFold 3的HIV-1 V1V2高效中和抗体结构及表位特征
11
作者 张俊杰 王倩莹 +9 位作者 刘颖 王书晖 任莉 王硕 施宇涛 阮玉华 刘筱靖 杜欣然 郝彦玲 李丹 《中华实验和临床病毒学杂志》 2025年第5期548-555,共8页
目的筛选人类免疫缺陷病毒Ⅰ型(human immunodeficiency virus-1,HIV-1)慢性感染者中广谱中和抗体并解析其分子特征,为精准疫苗设计和抗体治疗提供新策略。方法本研究纳入34例未经治疗的HIV-1慢性感染者,采用2种病毒蛋白检测血浆结合抗... 目的筛选人类免疫缺陷病毒Ⅰ型(human immunodeficiency virus-1,HIV-1)慢性感染者中广谱中和抗体并解析其分子特征,为精准疫苗设计和抗体治疗提供新策略。方法本研究纳入34例未经治疗的HIV-1慢性感染者,采用2种病毒蛋白检测血浆结合抗体水平,并对高结合力样本进行单个特异性记忆B细胞分选,通过PCR获取抗体轻重链可变区基因序列并进行配对表达。对获得的单克隆抗体进行假病毒中和试验评估,并整合AlphaFold 3结构预测与Discovery Studio分子对接技术分析抗体-抗原相互作用。结果感染者血清均表现出较强的DU422-GP140、BG505-GP140结合能力。从挑选的2例感染者样本成功获得8个单克隆抗体,其中抗体0919-A4、0919-A9和0808-A2可交叉结合AE、BC或B亚型HIV-1的GP140。抗体0919-A9对SF162(Tier 1)和CH181(Tier 2)假病毒表现出较强中和活性,其重链和轻链变异度分别为13.27%和15.58%,结构模拟显示其特异性结合GP120的V1V2可变区。结论本研究筛选出的抗体0919-A9具备中和Tier 2假病毒的能力,其高体细胞突变率及V1V2区靶向特性揭示了其中和活性的结构基础,为HIV疫苗设计和抗体药物开发提供了重要的候选分子和理论支持。 展开更多
关键词 人类免疫缺陷病毒 慢性感染者 中和抗体 AlphaFold 3 表位
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部