为了使用四旋翼无人机搭载二维激光雷达进行空间环境探测与建模,设计了无人机LIDAR(Light Detection and Ranging)探测方案,提出了基于欧式聚类与Alpha-shape算法的点云数据建模方法。以室内环境建模为例,通过无人机LIDAR测得室内多位...为了使用四旋翼无人机搭载二维激光雷达进行空间环境探测与建模,设计了无人机LIDAR(Light Detection and Ranging)探测方案,提出了基于欧式聚类与Alpha-shape算法的点云数据建模方法。以室内环境建模为例,通过无人机LIDAR测得室内多位置、多高度的平面点云数据。根据室内环境点云数据分块聚集的特性,对数据进行统计滤波消噪,并采用欧式聚类算法对点云数据进行聚类,对每个聚类分别选取合适的参数α绘制其Alpha-shape图形。对于采样高度均匀、雷达扫描频率稳定的点云数据,考虑到无人机激光雷达的数据特点,以每个聚类中点的数量和其包络在x-y平面的投影面积为参数,结合测量经验提出了α的计算式。利用此方法可以实现使用二维激光雷达进行空间建模,相较于使用三维激光雷达成本更低,测量更灵活。展开更多
针对室内环境中超宽带(Ultra-Wideband,UWB)信号易受障碍物遮挡导致非视距(Non Line of Sight,NLOS)误差的问题,本文提出了一种基于激光雷达(Light Detection And Ranging,LiDAR)点云识别UWB NLOS的融合定位方法,该方法利用LiDAR点云信...针对室内环境中超宽带(Ultra-Wideband,UWB)信号易受障碍物遮挡导致非视距(Non Line of Sight,NLOS)误差的问题,本文提出了一种基于激光雷达(Light Detection And Ranging,LiDAR)点云识别UWB NLOS的融合定位方法,该方法利用LiDAR点云信息辅助UWBNLOS识别,并通过UWB视距(LineofSight,LOS)测距值消除LiDAR同时定位与建图(Simultaneous Localization and Mapping,SLAM)过程中的累计误差,从而提高室内融合定位精度和鲁棒性。首先,采用八叉树对LiDAR点云进行处理,根据UWB基准站位置信息构建测距方向,并从LiDAR点云中提取测距方向上相关区域的点云数据。然后,通过3D Alpha Shape算法对所提取点云中可能阻碍UWB信号传播的障碍物进行轮廓提取。此外,根据分析提取的障碍物轮廓和UWB测距方向的空间关系,以此有效判定UWB信号是否存在NLOS测距情况。最后,剔除UWB测距过程中存在的NLOS测距值,通过紧组合方式,采用扩展卡尔曼滤波(EKF)将UWB LOS测距值和LiDAR SLAM的定位信息进行融合解算,消除LiDAR SLAM定位结果中的累积误差,以此提高融合定位精度和鲁棒性。为验证本文所提出的融合定位算法的有效性,通过搭建的融合定位实验平台在教学楼大厅进行了NLOS静态识别实验,在地下停车场进行了动态NLOS识别与动态定位实验。实验结果表明,该方法能够显著提高在室内复杂环境中的NLOS识别与定位的准确性,相较于单传感器定位与UWB原始测距值与LiDAR SLAM紧组合EKF的定位方法,NLOS识别准确率为93.22%,定位精度分别提高了49.24%、47.03%、96.13%,定位误差为0.067 m,实现了亚分米级室内定位。展开更多
文摘为了使用四旋翼无人机搭载二维激光雷达进行空间环境探测与建模,设计了无人机LIDAR(Light Detection and Ranging)探测方案,提出了基于欧式聚类与Alpha-shape算法的点云数据建模方法。以室内环境建模为例,通过无人机LIDAR测得室内多位置、多高度的平面点云数据。根据室内环境点云数据分块聚集的特性,对数据进行统计滤波消噪,并采用欧式聚类算法对点云数据进行聚类,对每个聚类分别选取合适的参数α绘制其Alpha-shape图形。对于采样高度均匀、雷达扫描频率稳定的点云数据,考虑到无人机激光雷达的数据特点,以每个聚类中点的数量和其包络在x-y平面的投影面积为参数,结合测量经验提出了α的计算式。利用此方法可以实现使用二维激光雷达进行空间建模,相较于使用三维激光雷达成本更低,测量更灵活。
文摘针对室内环境中超宽带(Ultra-Wideband,UWB)信号易受障碍物遮挡导致非视距(Non Line of Sight,NLOS)误差的问题,本文提出了一种基于激光雷达(Light Detection And Ranging,LiDAR)点云识别UWB NLOS的融合定位方法,该方法利用LiDAR点云信息辅助UWBNLOS识别,并通过UWB视距(LineofSight,LOS)测距值消除LiDAR同时定位与建图(Simultaneous Localization and Mapping,SLAM)过程中的累计误差,从而提高室内融合定位精度和鲁棒性。首先,采用八叉树对LiDAR点云进行处理,根据UWB基准站位置信息构建测距方向,并从LiDAR点云中提取测距方向上相关区域的点云数据。然后,通过3D Alpha Shape算法对所提取点云中可能阻碍UWB信号传播的障碍物进行轮廓提取。此外,根据分析提取的障碍物轮廓和UWB测距方向的空间关系,以此有效判定UWB信号是否存在NLOS测距情况。最后,剔除UWB测距过程中存在的NLOS测距值,通过紧组合方式,采用扩展卡尔曼滤波(EKF)将UWB LOS测距值和LiDAR SLAM的定位信息进行融合解算,消除LiDAR SLAM定位结果中的累积误差,以此提高融合定位精度和鲁棒性。为验证本文所提出的融合定位算法的有效性,通过搭建的融合定位实验平台在教学楼大厅进行了NLOS静态识别实验,在地下停车场进行了动态NLOS识别与动态定位实验。实验结果表明,该方法能够显著提高在室内复杂环境中的NLOS识别与定位的准确性,相较于单传感器定位与UWB原始测距值与LiDAR SLAM紧组合EKF的定位方法,NLOS识别准确率为93.22%,定位精度分别提高了49.24%、47.03%、96.13%,定位误差为0.067 m,实现了亚分米级室内定位。