High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a...High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.展开更多
Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side rea...Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1).展开更多
NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O...NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture.展开更多
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration...The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.展开更多
Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfill...Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.展开更多
Soil salinity and alkalinity adversely affects the productivity and grain quality of rice. The grain quality of 19 rice genotypes characterized as salt tolerant (T), semi-tolerant (ST) and sensitive (S) was asse...Soil salinity and alkalinity adversely affects the productivity and grain quality of rice. The grain quality of 19 rice genotypes characterized as salt tolerant (T), semi-tolerant (ST) and sensitive (S) was assessed in lysimeters containing saline and highly alkaline soils. Head rice recovery was reduced by salinity stress whereas it was not affected by alkalinity stress. The ratio of length to width (grain dimensions) was significantly reduced in the T genotype even at low electrical conductivity (EC, 4 mS/cm) and alkalinity (pH 9.5), whereas in the ST genotype, it was significantly reduced at high salinity (EC 8 mS/cm). There was no significant effect of any levels of salinity or alkalinity on grain dimensions in the S genotype. Amylose content was significantly reduced in T and ST groups even at low EC (4 mS/cm) and alkalinity (pH 9.5) and the effect in the S genotype was only at high salinity. Starch content showed significant reduction at high salinity and alkalinity (EC 8 mS/cm and pH 9.8) in the T and ST genotypes and no significant effect was observed in the S genotype. The effect of both levels of salinity (EC 4 and 8 mS/cm) and high alkalinity (pH 9.8) on gel consistency was observed only in the S genotype. The tolerant genotypes IR36 under high salinity, and CSIR10 and CSR11 under alkali stress showed less reduction in amylose content. The T genotype BR4-10, and ST genotypes CSR30, CSR29 and CSR13 showed better gel consistency under saline and alkali stress. Amylose content was affected even at low salinity stress and thus important to be considered in breeding rice for salt tolerance. Overall, the grain quality of T and ST genotypes was less affected by saline and alkali stress compared to S ones.展开更多
Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect ...Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.展开更多
A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted a...A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.展开更多
Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,...Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,alkaline phase transformation pathway,and micro-morphological transition characteristics during the gypsum addition were investigated in an attempt to understand alkalinity stabilization behavior.Results demonstrated that alkaline anions stabilization degree in leachates can reach approximately 96.29%,whilst pH and alkalinity were reduced from 10.47 to 8.15,47.39 mmol/L to 2 mmol/L,respectively.During the alkalinity stabilization,chemical regulation behavior plays significant role in driving the co-precipitation reaction among the critical alkaline anions(CO3^2–,HCO3^–,Al(OH)4^–,OH^–),with calcium carbonate(CaCO3))being the most prevalent among the transformed alkaline phases.In addition,XRD and SEM-EDX analyses of the solid phase revealed that physical immobilization behavior would also influence the stability of soluble alkali and chemical bonded alkali due to released Ca^2+from gypsum which aggregated the clay particles and stabilized them into coarse particles with a blocky structure.These findings will be beneficial for effectively regulating strong alkalinity of BR.展开更多
The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very ...The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.展开更多
The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in...The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.展开更多
Electro-oxidation of 5-hydroxymethylfurfural(HMFOR)is a promising green approach to realize the conversion of biomass into value-added chemicals.However,considering the complexity of the molecular structure of HMF,an ...Electro-oxidation of 5-hydroxymethylfurfural(HMFOR)is a promising green approach to realize the conversion of biomass into value-added chemicals.However,considering the complexity of the molecular structure of HMF,an in-depth understanding of the electrocatalytic behavior of HMFOR has rarely been investigated.Herein,the electrocatalytic mechanism of HMFOR on nickel nitride(Ni3 N)is elucidated by operando X-ray absorption spectroscopy(XAS),in situ Raman,quasi in situ X-ray photoelectron spectroscopy(XPS),and operando electrochemical impedance spectroscopy(EIS),respectively.The activity origin is proved to be Ni^(2+δ)N(OH)ads generated by the adsorbed hydroxyl group.Moreover,HMFOR on Ni3 N relates to a two-step reaction:Initially,the applied potential drives Ni atoms to lose electrons and adsorb OH-after 1.35 VRHE,giving rise to Ni^(2+δ)N(OH)ads with the electrophilic oxygen;then Ni^(2+δ)N(OH)ads seizes protons and electrons from HMF and leaves as H_(2) O spontaneously.Furthermore,the high electrolyte alkalinity favors the HMFOR process due to the increased active species(Ni^(2+δ)N(OH)ads)and the enhanced adsorption of HMF on the Ni3 N surface.This work could provide an in-depth understanding of the electrocatalytic mechanism of HMFOR on Ni3 N and demonstrate the alkalinity effect of the electrolyte on the electrocatalytic performance of HMFOR.展开更多
Alkalinity is one of the most important parameters that influence microbial metabolism and activity during sulfate-laden wastewater biological treatment. To comprehensively understand the structure and dynamics of fun...Alkalinity is one of the most important parameters that influence microbial metabolism and activity during sulfate-laden wastewater biological treatment. To comprehensively understand the structure and dynamics of functional microbial community under alkalinity changes in sulfate-reducing continuous stirred tank reactor (CSTR), fluorescent in situ hybridization (FISH) technique was selected for qualitative and semi-quantitative analysis of functional microbial compositions in activated sludge. During 93d of bioreactor operation, the influent alkalinity was adjusted by adding sodium bicarbonate from 4000mg·L^-1 down to 3000mg·L^-1, then to 1500mg·L^-1, whereas other parameters, such as the loading rates of chenucal oxygen demand (COD) and sulfate (SO4^2-), hydraulic retention time (HRT), and pH value, were continuously maintained at 24g·L^-1·d^-1 and 4.8g·L^-1·d^-1, 10h,and about 6.7, respectively. Sludge samples were collected during diflerent alkalinity levels, and total Bacteria, tlae sulfate-reducing bacteria (SRB), and four SRB genera were demonstrated with 16S ribosomal .RNA-targeted oligonucleotide probes. The results indicated that bioreactor started-up successfully in 30d. The two instances ot drop in alkalinity resulted in the fluctuation of sulfate removal rate. The diversity of SRB community showed significant shift, and the alteration of microbial community directly resulted in the corresponding statuses of bioreactor. The dominant genera during the bioreactor start-up and alkalinity drops were Desulfovibrio, Desulfobacter, Desulfovibrio, Desulfobacter, and Desulfovibrio, respectively. In addition, the acetotrophic SRB sutterecl more trom me reduction of alkalinity than the non-acetotrophic SRB. This strategy can present the functional microbial community structure during start-up and alkalinity drop stages, and provides a powerful theoretical guideline for optimization and adjustment of bioreactor, as well.展开更多
The amount of OH- replaced by sulfate, i.e., sulfate-exchange alkalinity, from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.T...The amount of OH- replaced by sulfate, i.e., sulfate-exchange alkalinity, from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid. The exchange acidity was displayed as PH was higher than 5.6. If the negative effect of sodium ions was offset, the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the PH range of lower than 5.8. The amount of OH- released decreased rapidly as PH was higher than 6.0 and dropped to zero when PH reached 6.5. In the solution of 2.0 mol L-1 NaClO4, the amount of OH- replaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction. The amount of OH- released in the solution of NaClO4 concentration below 2.0 mol L-1 from which the amount o f OH- adsorbed by ligand exchange reaction was subtracted could be considered as the OH- adsorbed by electrostatic force. The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and PH and increased almost linearly with the increasing amount of Na2SO4 added. The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5 mol L-1NaClO4 in the total OH- released were calculated, respectively.展开更多
Avicenna marina(Forssk.)Vierh is a halophytic mangrove.The reproductive unit is green and has photosynthetic propagules.Mangroves are naturally exposed to fluctuations in some abiotic factors at the soil surface,inclu...Avicenna marina(Forssk.)Vierh is a halophytic mangrove.The reproductive unit is green and has photosynthetic propagules.Mangroves are naturally exposed to fluctuations in some abiotic factors at the soil surface,including salinity and alkalinity.The objective of this study was to determine the effects of two salts including NaCl and NaHCO_(3)on germination processes and discuss the relationships between cotyledon photosynthesis and embryo axis growth in A.marina propagules.These propagules came from Al Birk,located on the shoreline of the Saudi Red Sea.The results showed that the studied salts did not affect neither the final germination percentage nor the embryo axis growth.However,rooting and root growth were delayed by both salts at 300 mM and were strongly inhibited by 600 mM NaHCO_(3).Both NaCl and NaHCO_(3)reduced the photosynthetic activity.These two salts did not affect the other photosynthetic parameters,including stomatal conductance,net transpiration,and intercellular CO_(2).Thereafter,the reduction in net photosynthesis was not related to any limitation of stomatal conductance.The early germination phase was independent of cotyledon photosynthesis,whereas rooting and root growth may be limited by reduced photosynthesis under NaCl and NaHCO_(3).展开更多
As a quasi-conservative tracer,measures of total alkalinity(TA)can be utilized to trace the relative fractions of freshwater and seawater.In this study,based on the TA and related data collected during the third Chine...As a quasi-conservative tracer,measures of total alkalinity(TA)can be utilized to trace the relative fractions of freshwater and seawater.In this study,based on the TA and related data collected during the third Chinese National Arctic Research Expedition(JulySeptember 2008,3rd CHINARE-Arctic)and the fourth Chinese National Arctic Research Expedition(JulySeptember 2010,4th CH1NARE-Arctic),fractions of sea-ice meltwater,river runoff,and seawater within the surface water of the western Arctic Ocean were determined using salinil~~and TA relationships.The largest fraction of seeL-ice meltwater was found around 75~N within the Canada Basin during both surveys,which is located at the ice edge.Generally,it was found that the frac-tion of river runoff was less than that of sea-ice meltwater.The river runoff,composed mainly of contributions from the Yukon River carried by Bering inflow water and the Mackenzie River,was influenced by the currents,leading to two peak areas of its fraction.Our results show that the dilution effect of freshwater carried by Bering inflow water during the 3rd CH1NARE-Arctic in 2008 expedition period may be stronger than that during the 4th CH1NARE-Arctic in 2010 expedition period.The peak area of sea-ice meltwater fraction during the 4th CH1NARE-Arctic was different from that of the 3rd CHINAR-E-Arctic,corresponding to their sea-ice condition.展开更多
The third Chinese National Arctic Research Expedition (3rd CHINARE-Arctic in 2008) was carried out from July to September 2008. During the survey, numerous sea water samples were taken for CO2 parameter measurement ...The third Chinese National Arctic Research Expedition (3rd CHINARE-Arctic in 2008) was carried out from July to September 2008. During the survey, numerous sea water samples were taken for CO2 parameter measurement (including total alkalinity TA and total dissolved inorganic carbon DIC).The distribution of COs parameters in the Western Arctic Ocean was determined, and the controlling factors are addressed. The ranges of summertime TA, normalized TA (nTA), DIC and normalized DIC (nDIC) in the surface seawater were 1 757 2 229 umol.kg 1 2 383-2 722 umol.kg-1, 1 681 2 034 pmol.kg 1, 2 119--2 600 umol.kg-1, respectively. Because of dilution from ice meltwater, the surface TA and DIC concentrations were relatively low. TA in the upper 100 m to the south of 78°N had good correlation with salinity, showing a conservative behavior. The distribution followed the seawater-river mixing line at salinity 〉30, then followed the seawater mixing line (diluted by river water to salinity = 30) with the ice meltwater. The DIC distribution in the Chukchi Sea was dominated by biological production or respiration of organic matter, whereas conservative mixing dominated the mixed layer TA distribution in the ice-free Canada Basin.展开更多
Scale not only affects the taste and color ofwater,but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it.As a popular beverage,tea is rich many substances that have consi...Scale not only affects the taste and color ofwater,but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it.As a popular beverage,tea is rich many substances that have considerable potential for scale inhibition,including protein,tea polyphenols and organic acids.In this study,the effect of tea brewing on scale formationwas explored.It was found that the proteins,catechins and organic acids in tea leaves could be released when the green tea was brewed in water with sufficient hardness and alkalinity.The tea-released protein was able to provide carboxyl groups to chelate with calcium ions(Ca^(2+)),preventing the Ca^(2+)from reacting with the carbonate ions(CO_(3)^(2-)).The B rings of catechins were another important structure in the complexation of Ca^(2+)and magnesium ions(Mg2+).The carboxyl and hydroxyl groups on the organic acids was able to form fivemembered chelating rings with Ca^(2+)and Mg^(2+),resulting in a significant decrease in Ca^(2+)from 100.0 to 60.0 mg/L.Additionally,the hydrogen ions(H^(+))provided by the organic acids consumed and decreased the alkalinity of the water from 250.0 to 131.4 mg/L,leading to a remarkable reduction in pH from 8.93 to 7.73.It further prevented the bicarbonate(HCO_(3)^(-))from producing CO_(3)^(2−)when the water was heated.The reaction of the tea constituents with the hardness and alkalinity inhibited the formation of scale,leading to a significant decrease in turbidity from 10.6 to 1.4 NTU.Overall,this study provides information to help build towards an understanding of the scale inhibition properties of tea and the prospects of tea for anti-scaling in industrial applications.展开更多
The surfaces of red soils have an apparent amphotenc character, carrying titratable acidity and titratable alkalinity simultaneously. The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxid...The surfaces of red soils have an apparent amphotenc character, carrying titratable acidity and titratable alkalinity simultaneously. The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter, while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces. The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils. The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution, free iron ox-ide(Fed) extracted with sodium dithionite-citrate-bicarbonate (DCB) and clays, but also with the zero point of charge (ZPC) of the samples. Organic matter made an important contribution to the titratable acidity. The titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed. The titratable acidity and titratable alkalinity of red soils were influenced by parent materials, being in the order of red soil derived from basalt > that from tuff > that from granite. The titratable acidity and titratable alkalinity were closely related with origination of the variable charges of red soils, and to a certain extent were responsible for variable negative and positive charges of the soils.展开更多
Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a disti...Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea Coastal Current.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFC1908702)the National Natural Science Foundation of China(No.52131002)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.22dz1209200)China Three Gorges Corporation(No.202403018).
文摘High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
基金funded by the National Natural Science Foundation of China(22478632)Key Scientific and Technological Project of Henan Province(242102321032).
文摘Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1).
基金supports from National Natural Science Foundation of China(21938009,22308358,22208346,22078332)National Key Research and Development Program(2022YFC3902701)+2 种基金Ningxia Natural Science Foundation(2021AAC01002)the External Cooperation Program of BIC,Chinese Academy of Sciences(122111KYSB20190032)CAS Project for Young Scientists in Basic Research(YSBR-038)are gratefully acknowledged.
文摘NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture.
文摘The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.
基金Projects(41877551,41842020)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.
文摘Soil salinity and alkalinity adversely affects the productivity and grain quality of rice. The grain quality of 19 rice genotypes characterized as salt tolerant (T), semi-tolerant (ST) and sensitive (S) was assessed in lysimeters containing saline and highly alkaline soils. Head rice recovery was reduced by salinity stress whereas it was not affected by alkalinity stress. The ratio of length to width (grain dimensions) was significantly reduced in the T genotype even at low electrical conductivity (EC, 4 mS/cm) and alkalinity (pH 9.5), whereas in the ST genotype, it was significantly reduced at high salinity (EC 8 mS/cm). There was no significant effect of any levels of salinity or alkalinity on grain dimensions in the S genotype. Amylose content was significantly reduced in T and ST groups even at low EC (4 mS/cm) and alkalinity (pH 9.5) and the effect in the S genotype was only at high salinity. Starch content showed significant reduction at high salinity and alkalinity (EC 8 mS/cm and pH 9.8) in the T and ST genotypes and no significant effect was observed in the S genotype. The effect of both levels of salinity (EC 4 and 8 mS/cm) and high alkalinity (pH 9.8) on gel consistency was observed only in the S genotype. The tolerant genotypes IR36 under high salinity, and CSIR10 and CSR11 under alkali stress showed less reduction in amylose content. The T genotype BR4-10, and ST genotypes CSR30, CSR29 and CSR13 showed better gel consistency under saline and alkali stress. Amylose content was affected even at low salinity stress and thus important to be considered in breeding rice for salt tolerance. Overall, the grain quality of T and ST genotypes was less affected by saline and alkali stress compared to S ones.
基金supported by the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2013DX10)the National Water Special Funds of China(No.2008ZX07207)
文摘Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.
基金Project(50874117) supported by the National Natural Science Foundation of China
文摘A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.
基金Project(41877511)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for the Chinese Public Welfare Industry,China
文摘Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,alkaline phase transformation pathway,and micro-morphological transition characteristics during the gypsum addition were investigated in an attempt to understand alkalinity stabilization behavior.Results demonstrated that alkaline anions stabilization degree in leachates can reach approximately 96.29%,whilst pH and alkalinity were reduced from 10.47 to 8.15,47.39 mmol/L to 2 mmol/L,respectively.During the alkalinity stabilization,chemical regulation behavior plays significant role in driving the co-precipitation reaction among the critical alkaline anions(CO3^2–,HCO3^–,Al(OH)4^–,OH^–),with calcium carbonate(CaCO3))being the most prevalent among the transformed alkaline phases.In addition,XRD and SEM-EDX analyses of the solid phase revealed that physical immobilization behavior would also influence the stability of soluble alkali and chemical bonded alkali due to released Ca^2+from gypsum which aggregated the clay particles and stabilized them into coarse particles with a blocky structure.These findings will be beneficial for effectively regulating strong alkalinity of BR.
基金Sponsored by Provincial Natural Science Foundation of Henan of China(200612001)
文摘The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.
基金This study was supported by the Qingdao Special Program for Leading Scientists under contract No.04-3-JJ-03the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.KZCX1-SW-01-08the“100 Talents Project”of the Chinese Academy of Sciences and the National Science Foundation for Outstanding Young Scientists of China under contract No.49925614.
文摘The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.
基金supported by the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(Grant No.:21902047)+1 种基金the Provincial Natural Science Foundation of Hunan(2020JJ5045)the Fundamental Research Funds for the Central Universities(Grant No.531118010127)。
文摘Electro-oxidation of 5-hydroxymethylfurfural(HMFOR)is a promising green approach to realize the conversion of biomass into value-added chemicals.However,considering the complexity of the molecular structure of HMF,an in-depth understanding of the electrocatalytic behavior of HMFOR has rarely been investigated.Herein,the electrocatalytic mechanism of HMFOR on nickel nitride(Ni3 N)is elucidated by operando X-ray absorption spectroscopy(XAS),in situ Raman,quasi in situ X-ray photoelectron spectroscopy(XPS),and operando electrochemical impedance spectroscopy(EIS),respectively.The activity origin is proved to be Ni^(2+δ)N(OH)ads generated by the adsorbed hydroxyl group.Moreover,HMFOR on Ni3 N relates to a two-step reaction:Initially,the applied potential drives Ni atoms to lose electrons and adsorb OH-after 1.35 VRHE,giving rise to Ni^(2+δ)N(OH)ads with the electrophilic oxygen;then Ni^(2+δ)N(OH)ads seizes protons and electrons from HMF and leaves as H_(2) O spontaneously.Furthermore,the high electrolyte alkalinity favors the HMFOR process due to the increased active species(Ni^(2+δ)N(OH)ads)and the enhanced adsorption of HMF on the Ni3 N surface.This work could provide an in-depth understanding of the electrocatalytic mechanism of HMFOR on Ni3 N and demonstrate the alkalinity effect of the electrolyte on the electrocatalytic performance of HMFOR.
基金Supported by the National Natural Science Foundation of China (No.50208006).
文摘Alkalinity is one of the most important parameters that influence microbial metabolism and activity during sulfate-laden wastewater biological treatment. To comprehensively understand the structure and dynamics of functional microbial community under alkalinity changes in sulfate-reducing continuous stirred tank reactor (CSTR), fluorescent in situ hybridization (FISH) technique was selected for qualitative and semi-quantitative analysis of functional microbial compositions in activated sludge. During 93d of bioreactor operation, the influent alkalinity was adjusted by adding sodium bicarbonate from 4000mg·L^-1 down to 3000mg·L^-1, then to 1500mg·L^-1, whereas other parameters, such as the loading rates of chenucal oxygen demand (COD) and sulfate (SO4^2-), hydraulic retention time (HRT), and pH value, were continuously maintained at 24g·L^-1·d^-1 and 4.8g·L^-1·d^-1, 10h,and about 6.7, respectively. Sludge samples were collected during diflerent alkalinity levels, and total Bacteria, tlae sulfate-reducing bacteria (SRB), and four SRB genera were demonstrated with 16S ribosomal .RNA-targeted oligonucleotide probes. The results indicated that bioreactor started-up successfully in 30d. The two instances ot drop in alkalinity resulted in the fluctuation of sulfate removal rate. The diversity of SRB community showed significant shift, and the alteration of microbial community directly resulted in the corresponding statuses of bioreactor. The dominant genera during the bioreactor start-up and alkalinity drops were Desulfovibrio, Desulfobacter, Desulfovibrio, Desulfobacter, and Desulfovibrio, respectively. In addition, the acetotrophic SRB sutterecl more trom me reduction of alkalinity than the non-acetotrophic SRB. This strategy can present the functional microbial community structure during start-up and alkalinity drop stages, and provides a powerful theoretical guideline for optimization and adjustment of bioreactor, as well.
文摘The amount of OH- replaced by sulfate, i.e., sulfate-exchange alkalinity, from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid. The exchange acidity was displayed as PH was higher than 5.6. If the negative effect of sodium ions was offset, the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the PH range of lower than 5.8. The amount of OH- released decreased rapidly as PH was higher than 6.0 and dropped to zero when PH reached 6.5. In the solution of 2.0 mol L-1 NaClO4, the amount of OH- replaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction. The amount of OH- released in the solution of NaClO4 concentration below 2.0 mol L-1 from which the amount o f OH- adsorbed by ligand exchange reaction was subtracted could be considered as the OH- adsorbed by electrostatic force. The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and PH and increased almost linearly with the increasing amount of Na2SO4 added. The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5 mol L-1NaClO4 in the total OH- released were calculated, respectively.
基金This research was supported by King Khalid University(KKU),Award No.R.G.P.1/114/40,Abha,Saudi Arabia.
文摘Avicenna marina(Forssk.)Vierh is a halophytic mangrove.The reproductive unit is green and has photosynthetic propagules.Mangroves are naturally exposed to fluctuations in some abiotic factors at the soil surface,including salinity and alkalinity.The objective of this study was to determine the effects of two salts including NaCl and NaHCO_(3)on germination processes and discuss the relationships between cotyledon photosynthesis and embryo axis growth in A.marina propagules.These propagules came from Al Birk,located on the shoreline of the Saudi Red Sea.The results showed that the studied salts did not affect neither the final germination percentage nor the embryo axis growth.However,rooting and root growth were delayed by both salts at 300 mM and were strongly inhibited by 600 mM NaHCO_(3).Both NaCl and NaHCO_(3)reduced the photosynthetic activity.These two salts did not affect the other photosynthetic parameters,including stomatal conductance,net transpiration,and intercellular CO_(2).Thereafter,the reduction in net photosynthesis was not related to any limitation of stomatal conductance.The early germination phase was independent of cotyledon photosynthesis,whereas rooting and root growth may be limited by reduced photosynthesis under NaCl and NaHCO_(3).
基金the National Natural Science Foundation of China(Grant no.40976116)the Scientific Research Foundation of the Third Institute of Oceanography(Grant nos.2010011,2010001)+4 种基金the Natural Science Foundation of Fujian Province of China(Grant no.2011J01271)the SOA Youth Foundation Grant(Grant no.2012538)the China Polar Environment Comprehensive Investigation&Assessment Programs(Grant nos.2012-03-04,2012-04-04)the Special Research Foundation for Public Welfare Marine Program(Grant no.201105022-2)the China Program for International PolarYear 2007-2008
文摘As a quasi-conservative tracer,measures of total alkalinity(TA)can be utilized to trace the relative fractions of freshwater and seawater.In this study,based on the TA and related data collected during the third Chinese National Arctic Research Expedition(JulySeptember 2008,3rd CHINARE-Arctic)and the fourth Chinese National Arctic Research Expedition(JulySeptember 2010,4th CH1NARE-Arctic),fractions of sea-ice meltwater,river runoff,and seawater within the surface water of the western Arctic Ocean were determined using salinil~~and TA relationships.The largest fraction of seeL-ice meltwater was found around 75~N within the Canada Basin during both surveys,which is located at the ice edge.Generally,it was found that the frac-tion of river runoff was less than that of sea-ice meltwater.The river runoff,composed mainly of contributions from the Yukon River carried by Bering inflow water and the Mackenzie River,was influenced by the currents,leading to two peak areas of its fraction.Our results show that the dilution effect of freshwater carried by Bering inflow water during the 3rd CH1NARE-Arctic in 2008 expedition period may be stronger than that during the 4th CH1NARE-Arctic in 2010 expedition period.The peak area of sea-ice meltwater fraction during the 4th CH1NARE-Arctic was different from that of the 3rd CHINAR-E-Arctic,corresponding to their sea-ice condition.
基金funded from the National Natural Science Foundation of China (Grant no. 40976116)the Scientific Research Foundation of Third Institute of Oceanography,SOA (Grant nos. 2010011, 2010001)+1 种基金sponsored by the China Program for International Polar Year 2007–2008the Special Research Foundation for Public Welfare Marine Program(Grant no. 201105022–2)
文摘The third Chinese National Arctic Research Expedition (3rd CHINARE-Arctic in 2008) was carried out from July to September 2008. During the survey, numerous sea water samples were taken for CO2 parameter measurement (including total alkalinity TA and total dissolved inorganic carbon DIC).The distribution of COs parameters in the Western Arctic Ocean was determined, and the controlling factors are addressed. The ranges of summertime TA, normalized TA (nTA), DIC and normalized DIC (nDIC) in the surface seawater were 1 757 2 229 umol.kg 1 2 383-2 722 umol.kg-1, 1 681 2 034 pmol.kg 1, 2 119--2 600 umol.kg-1, respectively. Because of dilution from ice meltwater, the surface TA and DIC concentrations were relatively low. TA in the upper 100 m to the south of 78°N had good correlation with salinity, showing a conservative behavior. The distribution followed the seawater-river mixing line at salinity 〉30, then followed the seawater mixing line (diluted by river water to salinity = 30) with the ice meltwater. The DIC distribution in the Chukchi Sea was dominated by biological production or respiration of organic matter, whereas conservative mixing dominated the mixed layer TA distribution in the ice-free Canada Basin.
基金supported by the National Natural Science Foundation of China (No. 51978558)the National Key Research and Development Program of China (No. 2019YFD1100102-04)the Chemical Institute of Chemical Industry of Shaanxi Normal University,Open Project of State Key Laboratory of Urban Water Resource and Environment (No. ES202121)
文摘Scale not only affects the taste and color ofwater,but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it.As a popular beverage,tea is rich many substances that have considerable potential for scale inhibition,including protein,tea polyphenols and organic acids.In this study,the effect of tea brewing on scale formationwas explored.It was found that the proteins,catechins and organic acids in tea leaves could be released when the green tea was brewed in water with sufficient hardness and alkalinity.The tea-released protein was able to provide carboxyl groups to chelate with calcium ions(Ca^(2+)),preventing the Ca^(2+)from reacting with the carbonate ions(CO_(3)^(2-)).The B rings of catechins were another important structure in the complexation of Ca^(2+)and magnesium ions(Mg2+).The carboxyl and hydroxyl groups on the organic acids was able to form fivemembered chelating rings with Ca^(2+)and Mg^(2+),resulting in a significant decrease in Ca^(2+)from 100.0 to 60.0 mg/L.Additionally,the hydrogen ions(H^(+))provided by the organic acids consumed and decreased the alkalinity of the water from 250.0 to 131.4 mg/L,leading to a remarkable reduction in pH from 8.93 to 7.73.It further prevented the bicarbonate(HCO_(3)^(-))from producing CO_(3)^(2−)when the water was heated.The reaction of the tea constituents with the hardness and alkalinity inhibited the formation of scale,leading to a significant decrease in turbidity from 10.6 to 1.4 NTU.Overall,this study provides information to help build towards an understanding of the scale inhibition properties of tea and the prospects of tea for anti-scaling in industrial applications.
基金Project supported by the National Natural Science Foundation of China.
文摘The surfaces of red soils have an apparent amphotenc character, carrying titratable acidity and titratable alkalinity simultaneously. The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter, while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces. The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils. The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution, free iron ox-ide(Fed) extracted with sodium dithionite-citrate-bicarbonate (DCB) and clays, but also with the zero point of charge (ZPC) of the samples. Organic matter made an important contribution to the titratable acidity. The titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed. The titratable acidity and titratable alkalinity of red soils were influenced by parent materials, being in the order of red soil derived from basalt > that from tuff > that from granite. The titratable acidity and titratable alkalinity were closely related with origination of the variable charges of red soils, and to a certain extent were responsible for variable negative and positive charges of the soils.
文摘Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea Coastal Current.