期刊文献+
共找到280,454篇文章
< 1 2 250 >
每页显示 20 50 100
Regulating Algorithmic Online Manipulation in the Digital Market-Responses of the EU and China
1
作者 Gu Chenhao Wu Qian 《科技与法律(中英文)》 2025年第2期138-148,共11页
The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipul... The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipulation,to inten⁃tionally exploit people's cognitive and decision-making gaps to influence their decisions in practice,which is particu⁃larly detrimental to the sustainable development of the digital market.Limiting harmful algorithmic online manipula⁃tion in digital markets has become a challenging task.Globally,both the EU and China have responded to this issue,and the differences between them are so evident that their governance measures can serve as the typical case.The EU focuses on improving citizens'digital literacy and their ability to integrate into digital social life to independently ad⁃dress this issue,and expects to address harmful manipulation behavior through binding and applicable hard law,which is part of the digital strategy.By comparison,although there exist certain legal norms that have made relevant stipula⁃tions on manipulation issues,China continues to issue specific departmental regulations to regulate algorithmic recom⁃mender services,and pays more attention to addressing collective harm caused by algorithmic online manipulation through a multiple co-governance approach led by the government or industry associations to implement supervision. 展开更多
关键词 algorithm MANIPULATION digital market the EU China
在线阅读 下载PDF
Energy focusing of flexural waves via algorithmically optimized coding metasurface lenses
2
作者 Zi-Rui Wang Di-Chao Chen +1 位作者 Rui Hong Da-Jian Wu 《Chinese Physics B》 2025年第9期277-282,共6页
Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing... Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures. 展开更多
关键词 coding metasurface elastic wave focusing genetic algorithm
原文传递
Algorithmic opacity and employees’knowledge hiding:medication by job insecurity and moderation by employee-AI collaboration
3
作者 Chunhong Guo Huifang Liu Jingfu Guo 《Journal of Psychology in Africa》 2025年第3期411-418,共8页
We explored the effects of algorithmic opacity on employees’playing dumb and evasive hiding rather than rationalized hiding.We examined the mediating role of job insecurity and the moderating role of employee-AI coll... We explored the effects of algorithmic opacity on employees’playing dumb and evasive hiding rather than rationalized hiding.We examined the mediating role of job insecurity and the moderating role of employee-AI collaboration.Participants were 421 full-time employees(female=46.32%,junior employees=31.83%)from a variety of organizations and industries that interact with AI.Employees filled out data on algorithm opacity,job insecurity,knowledge hiding,employee-AI collaboration,and control variables.The results of the structural equation modeling indicated that algorithm opacity exacerbated employees’job insecurity,and job insecurity mediated between algorithm opacity and playing dumb and evasive hiding rather than rationalized hiding.The relationship between algorithmic opacity and playing dumb and evasive hiding was more positive when the level of employee-AI collaboration was higher.These findings suggest that employee-AI collaboration reinforces the indirect relationship between algorithmic opacity and playing dumb and evasive hiding.Our study contributes to research on human and AI collaboration by exploring the dark side of employee-AI collaboration. 展开更多
关键词 algorithmic opacity job insecurity knowledge hiding employee-AI collaboration
在线阅读 下载PDF
Research on the Responsibility Traceability Mechanism Based on AI and the Application Boundary of Algorithmic Ethics in Medical Decision Making
4
作者 Baochen Huang Zhikai Huang 《Proceedings of Business and Economic Studies》 2025年第4期280-298,共19页
With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attentio... With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attention.This paper analyzes the limitations of algorithmic ethics in medical decision-making and explores accountability mechanisms,aiming to provide theoretical support for ethically informed medical practices.The study highlights how the opacity of AI algorithms complicates the definition of decision-making responsibility,undermines doctor-patient trust,and affects informed consent.By thoroughly investigating issues such as the algorithmic“black box”problem and data privacy protection,we develop accountability assessment models to address ethical concerns related to medical resource allocation.Furthermore,this research examines the effective implementation of AI diagnostic systems through case studies of both successful and unsuccessful applications,extracting lessons on accountability mechanisms and response strategies.Finally,we emphasize that establishing a transparent accountability framework is crucial for enhancing the ethical standards of medical AI systems and protecting patients’rights and interests. 展开更多
关键词 algorithmic ethics Medical decision-making Liability tracing Medical AI Patient rights protection
暂未订购
Duty of Care of Algorithmic Recommendation Service Providers for Copyright Protection under the Principle of Digital for Good
5
作者 ZHANG Jiyu WANG Saifei 《Frontiers of Law in China-Selected Publications from Chinese Universities》 2025年第3期291-317,共27页
The governance of algorithms is a central issue in the progress on the rule of law in an intelligent society.In the field of copyright law,the allocation of infringement liability for algorithmic recommendation servic... The governance of algorithms is a central issue in the progress on the rule of law in an intelligent society.In the field of copyright law,the allocation of infringement liability for algorithmic recommendation service providers should proceed from a systemic perspective rooted in the rule of law spirit of the times.Moving beyond the principle of technological neutrality and toward the principle of digital for good,it requires exploring the key role of online platforms in preventing infringement and fostering the development of digital technologies for good.This calls for the establishment of a legal system that is conducive to the combination of law and technology to support multi-stakeholder co-governance.It is recognized that algorithmic recommendation service providers bear a higher duty of care under specific conditions than that imposed by the noticeand-takedown process.The determination of whether such providers have fulfilled their duty of care should be based on industry-specific technological advancements,taking into account multiple factors such as the infringement damages,the probability of infringement occurrence,the cost of preventing infringement,and the copyright protection measures already taken in their algorithmic recommendation systems.At the same time,mechanisms such as effective notification,an efficient appeal process,and the right to request content restoration should be established to effectively protect the users'interests. 展开更多
关键词 digital for good algorithmic recommendations preventive function duty of care technology neutrality
原文传递
Non-Neural 3D Nasal Reconstruction:A Sparse Landmark Algorithmic Approach for Medical Applications
6
作者 Nguyen Khac Toan Ho Nguyen Anh Tuan Nguyen Truong Thinh 《Computer Modeling in Engineering & Sciences》 2025年第5期1273-1295,共23页
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n... This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications. 展开更多
关键词 Nose reconstruction 3D reconstruction medical applications algorithmic reconstruction enhanced 3D model
在线阅读 下载PDF
Large Language Models for Effective Detection of Algorithmically Generated Domains:A Comprehensive Review
7
作者 Hamed Alqahtani Gulshan Kumar 《Computer Modeling in Engineering & Sciences》 2025年第8期1439-1479,共41页
Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection me... Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems. 展开更多
关键词 Adversarial domains cyber threat detection domain generation algorithms large language models machine learning security
在线阅读 下载PDF
Algorithmic Empathy:Reconstructing Mainstream Media Communication Logic Through AI-Driven Technology for Precision Emotional Matching and Enhanced Communication Efficiency
8
作者 XIAO Shufang 《Journalism and Mass Communication》 2025年第3期189-195,共7页
This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital... This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital intelligence technology rapidly evolves,mainstream media organizations are increasingly leveraging AI-driven empathy algorithms to enhance audience engagement and optimize content delivery.This research employs a mixed-methods approach,combining quantitative analysis of algorithmic performance metrics with qualitative examination of media communication patterns.Through systematic review of 150 academic papers and analysis of data from 12 major media platforms,this study reveals that algorithmic empathy systems can improve emotional resonance by 34.7%and increase audience engagement by 28.3%compared to traditional communication methods.The findings demonstrate that AI algorithms reconstruct media communication logic through three primary pathways:emotional pattern recognition,personalized content curation,and real-time sentiment adaptation.However,the study also identifies significant challenges including algorithmic bias,emotional authenticity concerns,and ethical implications of automated empathy.The research contributes to understanding how mainstream media can leverage AI technology to build high-quality empathetic communication while maintaining journalistic integrity and social responsibility. 展开更多
关键词 algorithmic empathy artificial intelligence mainstream media communication logic emotional matching digital intelligence technology media convergence sentiment analysis
在线阅读 下载PDF
Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems
9
作者 Saket Sarin Sunil K.Singh +4 位作者 Sudhakar Kumar Shivam Goyal Brij Bhooshan Gupta Wadee Alhalabi Varsha Arya 《Computers, Materials & Continua》 SCIE EI 2024年第8期3123-3138,共16页
In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading... In the rapidly evolving landscape of today’s digital economy,Financial Technology(Fintech)emerges as a trans-formative force,propelled by the dynamic synergy between Artificial Intelligence(AI)and Algorithmic Trading.Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning(MARL)and Explainable AI(XAI)within Fintech,aiming to refine Algorithmic Trading strategies.Through meticulous examination,we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm,employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions.These AI-infused Fintech platforms harness collective intelligence to unearth trends,mitigate risks,and provide tailored financial guidance,fostering benefits for individuals and enterprises navigating the digital landscape.Our research holds the potential to revolutionize finance,opening doors to fresh avenues for investment and asset management in the digital age.Additionally,our statistical evaluation yields encouraging results,with metrics such as Accuracy=0.85,Precision=0.88,and F1 Score=0.86,reaffirming the efficacy of our approach within Fintech and emphasizing its reliability and innovative prowess. 展开更多
关键词 Neurodynamic Fintech multi-agent reinforcement learning algorithmic trading digital financial frontier
在线阅读 下载PDF
Harnessing the Power of Artificial Intelligence in Neuromuscular Disease Rehabilitation: A Comprehensive Review and Algorithmic Approach
10
作者 Rocco de Filippis Abdullah Al Foysal 《Advances in Bioscience and Biotechnology》 CAS 2024年第5期289-309,共21页
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen... Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence. 展开更多
关键词 Neuromuscular Diseases REHABILITATION Artificial Intelligence Machine Learning Robotic-Assisted Therapy Virtual Reality Personalized Treatment Motor Function Assistive Technologies algorithmic Rehabilitation
在线阅读 下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
11
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model Geometric algorithm Fracture flow Water-sealing effect
在线阅读 下载PDF
数智时代情报分析中算法分类、演进及应用研究 被引量:5
12
作者 张涛 王铮 马海群 《情报理论与实践》 北大核心 2025年第1期11-19,共9页
[目的/意义]数智时代随着算法广泛应用于情报分析中,揭示当前情报分析中算法使用的现状不但能帮助情报学领域学者把握学术研究热点,还能指导更多研究者更好地利用算法来解决情报分析过程中的实际问题。[方法/过程]重点梳理近10年情报学... [目的/意义]数智时代随着算法广泛应用于情报分析中,揭示当前情报分析中算法使用的现状不但能帮助情报学领域学者把握学术研究热点,还能指导更多研究者更好地利用算法来解决情报分析过程中的实际问题。[方法/过程]重点梳理近10年情报学领域5本核心期刊与情报分析算法相关文献,尝试梳理数智时代应用于情报分析中的算法分类,并从算法演进、算法应用角度全方位展示这些算法的特征。[结果/结论]从演进来看,近10年情报学领域应用算法的论文持续上升,而LDA是情报分析中运用最多的算法,自2020年起BERT算法呈现出新生演进特征;从应用来看,突发事件下的网络舆情、专利分析等应用呈现出不断细化、继承演进的趋势;图书馆、图书情报、电子商务、物流信息等应用逐渐衰退,取而代之的是数字人文、智慧图书馆、颠覆性技术等。 展开更多
关键词 智能算法 情报分析算法 数智时代 算法演进 算法应用
原文传递
国内外算法风险研究:框架、特征及展望 被引量:5
13
作者 马海群 张涛 《情报理论与实践》 北大核心 2025年第1期1-10,共10页
[目的/意义]随着ChatGPT的横空出世,算法应用越来越多地支配着人类的生活,算法黑箱、算法操控、算法共谋、算法偏见、算法歧视等风险也随之而来,这些风险严重影响社会稳定乃至国家安全。对全球算法风险的形势进行研判能够有助于防范与... [目的/意义]随着ChatGPT的横空出世,算法应用越来越多地支配着人类的生活,算法黑箱、算法操控、算法共谋、算法偏见、算法歧视等风险也随之而来,这些风险严重影响社会稳定乃至国家安全。对全球算法风险的形势进行研判能够有助于防范与识别算法风险,并为应对全球算法风险治理难题提供中国智慧与构想。[方法/过程]通过系统梳理国内外主要数据库915条核心文献,构建基于“学科领域—研究主题—治理工具—治理措施”的算法风险研究框架,并分析算法风险具有学科的交叉性、复杂的交织性、突出的人为性、泛化的不确定性等特征。[结果/结论]从加强情报学学科对算法风险研究、加强对人工智能算法可解释性研究、加强算法应用向善和算法服务从善研究、加强对全球算法风险治理中国智慧与构想研究4个方面对算法风险研究问题进行展望。 展开更多
关键词 算法风险 算法治理 算法向善 特征分析
原文传递
算法嵌入政府治理的实践转向与风险规制 被引量:1
14
作者 武中哲 朱坤帝 《湖北工程学院学报》 2025年第1期102-112,共11页
在数字政府时代,算法以其独特的技术优势广泛嵌入政府治理实践,并驱动政府治理活动朝着政府行政决策自动化、公共服务治理精准化以及社会风险防控主动性方向转型。然而,算法在助推政府治理实践转型的同时,也对政府治理产生“反噬”效应... 在数字政府时代,算法以其独特的技术优势广泛嵌入政府治理实践,并驱动政府治理活动朝着政府行政决策自动化、公共服务治理精准化以及社会风险防控主动性方向转型。然而,算法在助推政府治理实践转型的同时,也对政府治理产生“反噬”效应,不断暴露出“利维坦”的属性,并隐藏着对政府行政行为的隐患、对政府公信权威的减损以及对公民尊严价值的挑战等潜在风险。为此,应确立数字向善的价值理念,明晰与技术资本合作的审查标准,并在具体路径中,构建以算法影响评估、算法应用清单、算法公开披露、数据安全保护以及算法责任分配为基础的算法治理制度框架,从而推动实现算法内嵌政府治理过程中技术治理的目的性与工具性统一。 展开更多
关键词 数字政府 算法 政府治理 算法利维坦 数字资本
在线阅读 下载PDF
智能算法安全:内涵、科学问题与展望 被引量:7
15
作者 程学旗 陈薇 +3 位作者 沈华伟 山世光 陈熙霖 李国杰 《中国科学院院刊》 北大核心 2025年第3期419-428,共10页
智能算法是指实现智能的计算过程所体现的方法,大多具备数据驱动、不确定性计算、模型推断难解释等特性,而这些特性同时也给智能算法应用带来了潜在的安全风险。文章首先探讨智能算法安全的内涵。具体地,智能算法安全的内涵依据人机融... 智能算法是指实现智能的计算过程所体现的方法,大多具备数据驱动、不确定性计算、模型推断难解释等特性,而这些特性同时也给智能算法应用带来了潜在的安全风险。文章首先探讨智能算法安全的内涵。具体地,智能算法安全的内涵依据人机融合的程度,由算法自身的一元内生性安全,延伸到算法服务于人时的人机二元应用性安全,最终拓展为人机共生的复杂社会系统中多元系统性安全,故据此提出智能算法安全层级范式(以下简称“TRC范式”),分别涵盖内生决策可信(trustworthiness)的一元安全目标、应用服务可管(regulatability)的二元安全目标和系统风险可控(controllability)的多元安全目标。进一步,基于当前实现TRC范式中的技术难点与智能算法可信、可管、可控的目标,文章提出实现智能算法安全需要重点突破的不确定性算法的可信域判定、黑箱模型的透明化监测与人机共生智能系统的风险临界点感知3个重大科学问题。最后,围绕TRC范式的“度量—评估—增强”技术体系,提出7项研究方向建议与4个方面智能算法安全相关的发展建议,并展望其助力实现人机共治的未来愿景。 展开更多
关键词 大数据 智能算法 智能算法安全 人工智能伦理与安全 智能算法安全层级范式
原文传递
算法市场的兴起:概念、挑战与未来发展 被引量:4
16
作者 林建浩 张一帆 +1 位作者 石沛昌 吴俊樊 《南方经济》 北大核心 2025年第1期1-17,共17页
人工智能是新一轮科技革命和产业变革的重要驱动力量,人工智能发展离不开数据、算法和算力组成的“三驾马车”。其中,算法作为激发算力潜能与实现数据价值的重要技术环节,是推进“人工智能+”进程与新质生产力形成的核心驱动力。与数据... 人工智能是新一轮科技革命和产业变革的重要驱动力量,人工智能发展离不开数据、算法和算力组成的“三驾马车”。其中,算法作为激发算力潜能与实现数据价值的重要技术环节,是推进“人工智能+”进程与新质生产力形成的核心驱动力。与数据要素市场相比,算法市场的商业化进展明显滞后,其交易机制和市场结构尚缺少系统深入的研究。文章探讨了算法市场的交易标的、市场结构及其关键特征,梳理了算法确权保护和算法流通机制方面面临的主要挑战,并总结了算法确权和流通市场发展的实践探索。通过分析算法市场与知识产权、数据要素市场,文章发现,算法与知识产权在创新性和虚拟性方面具有相似性,但对隐私数据的依赖性和开闭源算法的差异性使其确权保护更具复杂性。同时,算法与数据要素市场共享场景依赖和非标特征,但算法更强的外部依赖性对其流通提出了更高要求。针对我国算法市场当前面临的诸多挑战,文章提出构建以政府和市场双驱动为核心的算法交易与流通机制的政策建议,通过优化确权机制、促进供需匹配、降低使用门槛以及推动跨境流通,以促进算法市场的健康发展和广泛应用。 展开更多
关键词 算法市场 数字经济 算法确权
在线阅读 下载PDF
融合与分离之困:算法异化下学术用户AIGC技术使用意愿研究 被引量:3
17
作者 张宁 陈江玲 袁勤俭 《现代情报》 北大核心 2025年第5期34-48,共15页
[目的/意义]人工智能(AI)技术在创新发展的同时也产生了算法异化。本研究以算法进步带来的异化现象为切入点,引入矛盾态度概念,研究学术用户人工智能生成内容(AIGC)技术使用意愿形成机制,为促成学术用户AIGC技术合理使用、技术服务商改... [目的/意义]人工智能(AI)技术在创新发展的同时也产生了算法异化。本研究以算法进步带来的异化现象为切入点,引入矛盾态度概念,研究学术用户人工智能生成内容(AIGC)技术使用意愿形成机制,为促成学术用户AIGC技术合理使用、技术服务商改进平台功能以及相关部门算法治理提供借鉴与参考。[方法/过程]基于ABC态度模型和自我调节理论,从算法欣赏和算法厌恶的角度构建算法异化下影响学术用户AIGC技术使用的理论模型,采用结构方程模型分析(SEM)和模糊集定性比较分析(fsQCA)的方法,对425份问卷数据进行实证分析。[结果/结论]SEM结果证实了矛盾态度对学术用户的AIGC使用意愿具有显著负向影响。算法欣赏(信息质量、功能质量)负向影响矛盾态度,算法厌恶(信息异化、治理滞后)正向影响矛盾态度,矛盾态度则在算法欣赏、算法厌恶和使用意愿间起到中介作用。同时,算法素养和社会支持在矛盾态度和AIGC技术使用意愿间起着调节作用;fsQCA结果进一步显示,质量导向型(S1)、自我效能型(S2)和群体驱动型(S3)形成高使用意愿,而风险规避型(NS1)和规范缺失型(NS2)会引发非高使用意愿。 展开更多
关键词 信息行为 算法异化 矛盾态度 算法欣赏 算法厌恶 AIGC 使用意愿
在线阅读 下载PDF
算法的“武器化”:计算政治时代被嵌入的安全风险 被引量:10
18
作者 董青岭 关意为 《东北亚论坛》 北大核心 2025年第1期44-64,127,128,共23页
当前,由于算法技术的进步,人类社会正在迎来全面智能化转型。作为数智社会运行的底层逻辑,算法重构了权力的物质基础,形成了规定权力运行的权力,创造了新的权力主体,引发了权力结构的动态调整,因而成为了一种“元权力”。在此情形下,作... 当前,由于算法技术的进步,人类社会正在迎来全面智能化转型。作为数智社会运行的底层逻辑,算法重构了权力的物质基础,形成了规定权力运行的权力,创造了新的权力主体,引发了权力结构的动态调整,因而成为了一种“元权力”。在此情形下,作为更高级别的权力形式,算法日渐频繁地被大国用作权力竞争武器。简单来说,“算法武器化”指的是行为体有目的、有组织和有意识地运用算法获取权力,以此影响他者行为、打击竞争对手、获取利益或保障安全,最终实现政治目标。在伊朗“推特革命”和美国涉TikTok法案事例中,美国政府展现出将算法“武器化”运用的强烈意愿,试图以算法为抓手、以计算思维为指导遏制竞争对手,塑造霸权优势。在美国决策者看来,算法不仅具有操纵公众认知、干预政治进程和煽动军事对抗的强大功能,而且具有改变经济格局,塑造社会发展形态的巨大潜力。在此背景下,算法逐渐被用作综合国力竞争武器、社会规则竞争武器、前沿阵地争夺武器和权力博弈武器,催生出以算法全域渗透为特征的复杂安全风险。 展开更多
关键词 算法武器化 元权力 算法黑箱 算法规则 新质生产力
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部