期刊文献+
共找到283,135篇文章
< 1 2 250 >
每页显示 20 50 100
Regulating Algorithmic Online Manipulation in the Digital Market-Responses of the EU and China
1
作者 Gu Chenhao Wu Qian 《科技与法律(中英文)》 2025年第2期138-148,共11页
The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipul... The original intention of the algorithmic recommender system is to grapple with the negative impacts caused by information overload,but the system also can be used as"hypernudge",a new form of online manipulation,to inten⁃tionally exploit people's cognitive and decision-making gaps to influence their decisions in practice,which is particu⁃larly detrimental to the sustainable development of the digital market.Limiting harmful algorithmic online manipula⁃tion in digital markets has become a challenging task.Globally,both the EU and China have responded to this issue,and the differences between them are so evident that their governance measures can serve as the typical case.The EU focuses on improving citizens'digital literacy and their ability to integrate into digital social life to independently ad⁃dress this issue,and expects to address harmful manipulation behavior through binding and applicable hard law,which is part of the digital strategy.By comparison,although there exist certain legal norms that have made relevant stipula⁃tions on manipulation issues,China continues to issue specific departmental regulations to regulate algorithmic recom⁃mender services,and pays more attention to addressing collective harm caused by algorithmic online manipulation through a multiple co-governance approach led by the government or industry associations to implement supervision. 展开更多
关键词 algorithm MANIPULATION digital market the EU China
在线阅读 下载PDF
Artificial intelligence in the service of entrepreneurial finance:knowledge structure and the foundational algorithmic paradigm
2
作者 Robert Kudelić Tamara Šmaguc Sherry Robinson 《Financial Innovation》 2025年第1期2021-2063,共43页
The study conducts a bibliometric review of artificial intelligence applications in two areas:the entrepreneurial finance literature,and the corporate finance literature with implications for entrepreneurship.A rigoro... The study conducts a bibliometric review of artificial intelligence applications in two areas:the entrepreneurial finance literature,and the corporate finance literature with implications for entrepreneurship.A rigorous search and screening of the web of science core collection identified 1,890 journal articles for analysis.The bibliometrics provide a detailed view of the knowledge field,indicating underdeveloped research directions.An important contribution comes from insights through artificial intelligence methods in entrepreneurship.The results demonstrate a high representation of artificial neural networks,deep neural networks,and support vector machines across almost all identified topic niches.In contrast,applications of topic modeling,fuzzy neural networks,and growing hierarchical self-organizing maps are rare.Additionally,we take a broader view by addressing the problem of applying artificial intelligence in economic science.Specifically,we present the foundational paradigm and a bespoke demonstration of the Monte Carlo randomized algorithm. 展开更多
关键词 BIBLIOMETRICS Artificial intelligence ENTREPRENEURSHIP FINANCE Randomized algorithm
在线阅读 下载PDF
Energy focusing of flexural waves via algorithmically optimized coding metasurface lenses
3
作者 Zi-Rui Wang Di-Chao Chen +1 位作者 Rui Hong Da-Jian Wu 《Chinese Physics B》 2025年第9期277-282,共6页
Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing... Efficient elastic wave focusing is crucial in materials and physical engineering.Elastic coding metasurfaces,which are innovative planar artificial structures,show great potential for use in the field of wave focusing.However,elastic coding lenses(ECLs)still suffer from low focusing performance,thickness comparable to wavelength,and frequency sensitivity.Here,we consider both the structural and material properties of the coding unit,thus realizing further compression of the thickness of the ECL.We chose the simplest ECL,which consists of only two encoding units.The coding unit 0 is a straight structure constructed using a carbon fiber reinforced composite material,and the coding unit 1 is a zigzag structure constructed using an aluminum material,and the thickness of the ECL constructed using them is only 1/8 of the wavelength.Based on the theoretical design,the arrangement of coding units is further optimized using genetic algorithms,which significantly improves the focusing performance of the lens at different focus and frequencies.This study provides a more effective way to control vibration and noise in advanced structures. 展开更多
关键词 coding metasurface elastic wave focusing genetic algorithm
原文传递
Algorithmic opacity and employees’knowledge hiding:medication by job insecurity and moderation by employee-AI collaboration
4
作者 Chunhong Guo Huifang Liu Jingfu Guo 《Journal of Psychology in Africa》 2025年第3期411-418,共8页
We explored the effects of algorithmic opacity on employees’playing dumb and evasive hiding rather than rationalized hiding.We examined the mediating role of job insecurity and the moderating role of employee-AI coll... We explored the effects of algorithmic opacity on employees’playing dumb and evasive hiding rather than rationalized hiding.We examined the mediating role of job insecurity and the moderating role of employee-AI collaboration.Participants were 421 full-time employees(female=46.32%,junior employees=31.83%)from a variety of organizations and industries that interact with AI.Employees filled out data on algorithm opacity,job insecurity,knowledge hiding,employee-AI collaboration,and control variables.The results of the structural equation modeling indicated that algorithm opacity exacerbated employees’job insecurity,and job insecurity mediated between algorithm opacity and playing dumb and evasive hiding rather than rationalized hiding.The relationship between algorithmic opacity and playing dumb and evasive hiding was more positive when the level of employee-AI collaboration was higher.These findings suggest that employee-AI collaboration reinforces the indirect relationship between algorithmic opacity and playing dumb and evasive hiding.Our study contributes to research on human and AI collaboration by exploring the dark side of employee-AI collaboration. 展开更多
关键词 algorithmic opacity job insecurity knowledge hiding employee-AI collaboration
在线阅读 下载PDF
Algorithmic crypto trading using information‑driven bars,triple barrier labeling and deep learning
5
作者 Przemysław Grądzki Piotr Wojcik Stefan Lessmann 《Financial Innovation》 2025年第1期3979-4021,共43页
This paper investigates the optimization of data sampling and target labeling techniques to enhance algorithmic trading strategies in cryptocurrency markets,focusing on Bitcoin(BTC)and Ethereum(ETH).Traditional data s... This paper investigates the optimization of data sampling and target labeling techniques to enhance algorithmic trading strategies in cryptocurrency markets,focusing on Bitcoin(BTC)and Ethereum(ETH).Traditional data sampling methods,such as time bars,often fail to capture the nuances of the continuously active and highly volatile cryptocurrency market and force traders to wait for arbitrary points in time.To address this,we propose an alternative approach using information-driven sampling methods,including the CUSUM filter,range bars,volume bars,and dollar bars,and evaluate their performance using tick-level data from January 2018 to June 2023.Additionally,we introduce the Triple Barrier method for target labeling,which offers a solution tailored for algorithmic trading as opposed to the widely used next-bar prediction.We empirically assess the effectiveness of these data sampling and labeling methods to craft profitable trading strategies.The results demonstrate that the innovative combination of CUSUM-filtered data with Triple Barrier labeling outperforms traditional time bars and next-bar prediction,achieving consistently positive trading performance even after accounting for transaction costs.Moreover,our system enables making trading decisions at any point in time on the basis of market conditions,providing an advantage over traditional methods that rely on fixed time intervals.Furthermore,the paper contributes to the ongoing debate on the applicability of Transformer models to time series classification in the context of algorithmic trading by evaluating various Transformer architectures—including the vanilla Transformer encoder,FEDformer,and Autoformer—alongside other deep learning architectures and classical machine learning models,revealing insights into their relative performance. 展开更多
关键词 Cryptocurrencies algorithmic trading Deep learning Information-driven bars Triple barrier method
在线阅读 下载PDF
Research on the Responsibility Traceability Mechanism Based on AI and the Application Boundary of Algorithmic Ethics in Medical Decision Making
6
作者 Baochen Huang Zhikai Huang 《Proceedings of Business and Economic Studies》 2025年第4期280-298,共19页
With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attentio... With the rapid advancement of medical artificial intelligence(AI)technology,particularly the widespread adoption of AI diagnostic systems,ethical challenges in medical decision-making have garnered increasing attention.This paper analyzes the limitations of algorithmic ethics in medical decision-making and explores accountability mechanisms,aiming to provide theoretical support for ethically informed medical practices.The study highlights how the opacity of AI algorithms complicates the definition of decision-making responsibility,undermines doctor-patient trust,and affects informed consent.By thoroughly investigating issues such as the algorithmic“black box”problem and data privacy protection,we develop accountability assessment models to address ethical concerns related to medical resource allocation.Furthermore,this research examines the effective implementation of AI diagnostic systems through case studies of both successful and unsuccessful applications,extracting lessons on accountability mechanisms and response strategies.Finally,we emphasize that establishing a transparent accountability framework is crucial for enhancing the ethical standards of medical AI systems and protecting patients’rights and interests. 展开更多
关键词 algorithmic ethics Medical decision-making Liability tracing Medical AI Patient rights protection
暂未订购
Non-Neural 3D Nasal Reconstruction:A Sparse Landmark Algorithmic Approach for Medical Applications
7
作者 Nguyen Khac Toan Ho Nguyen Anh Tuan Nguyen Truong Thinh 《Computer Modeling in Engineering & Sciences》 2025年第5期1273-1295,共23页
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n... This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications. 展开更多
关键词 Nose reconstruction 3D reconstruction medical applications algorithmic reconstruction enhanced 3D model
在线阅读 下载PDF
Large Language Models for Effective Detection of Algorithmically Generated Domains:A Comprehensive Review
8
作者 Hamed Alqahtani Gulshan Kumar 《Computer Modeling in Engineering & Sciences》 2025年第8期1439-1479,共41页
Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection me... Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems. 展开更多
关键词 Adversarial domains cyber threat detection domain generation algorithms large language models machine learning security
在线阅读 下载PDF
Algorithmic Empathy:Reconstructing Mainstream Media Communication Logic Through AI-Driven Technology for Precision Emotional Matching and Enhanced Communication Efficiency
9
作者 XIAO Shufang 《Journalism and Mass Communication》 2025年第3期189-195,共7页
This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital... This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital intelligence technology rapidly evolves,mainstream media organizations are increasingly leveraging AI-driven empathy algorithms to enhance audience engagement and optimize content delivery.This research employs a mixed-methods approach,combining quantitative analysis of algorithmic performance metrics with qualitative examination of media communication patterns.Through systematic review of 150 academic papers and analysis of data from 12 major media platforms,this study reveals that algorithmic empathy systems can improve emotional resonance by 34.7%and increase audience engagement by 28.3%compared to traditional communication methods.The findings demonstrate that AI algorithms reconstruct media communication logic through three primary pathways:emotional pattern recognition,personalized content curation,and real-time sentiment adaptation.However,the study also identifies significant challenges including algorithmic bias,emotional authenticity concerns,and ethical implications of automated empathy.The research contributes to understanding how mainstream media can leverage AI technology to build high-quality empathetic communication while maintaining journalistic integrity and social responsibility. 展开更多
关键词 algorithmic empathy artificial intelligence mainstream media communication logic emotional matching digital intelligence technology media convergence sentiment analysis
在线阅读 下载PDF
基于禁忌搜索与粒子群优化算法的地下水污染源信息辨识
10
作者 徐津 伍梦天 +3 位作者 李凯 王玲玲 朱海 王明辉 《河海大学学报(自然科学版)》 北大核心 2026年第1期36-42,共7页
为准确辨识地下水污染源位置、污染物释放过程等关键信息,采用模拟-优化理论框架,将需要同步辨识多种污染源信息的地下水反演问题概化为包含离散型、连续型变量的混合变量优化问题,并提出了一种基于禁忌搜索与粒子群优化算法的两阶段组... 为准确辨识地下水污染源位置、污染物释放过程等关键信息,采用模拟-优化理论框架,将需要同步辨识多种污染源信息的地下水反演问题概化为包含离散型、连续型变量的混合变量优化问题,并提出了一种基于禁忌搜索与粒子群优化算法的两阶段组合优化(TS-PSO)算法,该算法采用禁忌搜索策略确定污染源位置,利用粒子群优化算法识别污染物的释放强度及释放过程。算例验证结果表明:与传统演化算法(GA、PSO算法)相比,TS-PSO算法的求解效率更高,计算结果更可靠,计算精度更高;对于多个污染源的反演问题,TS-PSO算法可快速、有效地辨识污染源位置、污染物释放强度和释放过程。 展开更多
关键词 地下水污染 信息辨识 优化算法 禁忌搜索 粒子群优化算法
在线阅读 下载PDF
基于多机制融合PGSA的弦支穹顶结构预应力优化
11
作者 姜正荣 苏昌旺 +1 位作者 石开荣 周梓杰 《西南交通大学学报》 北大核心 2026年第1期127-135,共9页
针对模拟植物生长算法(PGSA)以固定步长搜索难以收敛于全局最优解、对初始生长点选取依赖性强和生长空间巨大的局限性,提出自适应变步长搜索、高斯扰动变异和生长空间筛选3种机制的新策略,建立基于多机制融合的模拟植物生长算法(多机制... 针对模拟植物生长算法(PGSA)以固定步长搜索难以收敛于全局最优解、对初始生长点选取依赖性强和生长空间巨大的局限性,提出自适应变步长搜索、高斯扰动变异和生长空间筛选3种机制的新策略,建立基于多机制融合的模拟植物生长算法(多机制融合PGSA),进一步采用多机制融合PGSA对弦支穹顶结构进行预应力优化,并与其他优化算法进行对比.结果表明:与原PGSA相比,引入自适应变步长搜索机制,可避免算法陷入局部最优解,引入高斯扰动变异机制,可解决由于初始生长点的选取不当而造成优化结果不佳的问题,引入生长空间筛选机制,可在算法收敛后有效终止生长,显著缩小生长空间(降幅最大达97.64%);与其他优化算法相比,多机制融合PGSA的迭代次数最少(仅为45次),且优化得到的支座平均水平径向反力绝对值最小(仅为0.004 kN),验证了该算法的适用性. 展开更多
关键词 弦支穹顶结构 模拟植物生长算法 预应力优化 多机制融合 算法新策略
在线阅读 下载PDF
基于集成学习Stacking算法的南极热流预测模型
12
作者 蔡轶珩 张晓晴 +3 位作者 稂时楠 崔祥斌 何彦良 张恒 《大地测量与地球动力学》 北大核心 2026年第1期55-62,85,共9页
大地热流(heat flow,HF)是指地球内部传递至地表的热能,它能够揭示地球深部的各种作用过程及能量平衡信息。在南极洲地区,掌握热流情况对于模拟冰盖动态变化具有极其重要的意义。本研究运用机器学习中的Stacking堆叠算法,构建一个南极... 大地热流(heat flow,HF)是指地球内部传递至地表的热能,它能够揭示地球深部的各种作用过程及能量平衡信息。在南极洲地区,掌握热流情况对于模拟冰盖动态变化具有极其重要的意义。本研究运用机器学习中的Stacking堆叠算法,构建一个南极洲热流预测模型。该模型整合13种与热流相关的地质及地球物理特征的观测输入数据,并集成GBDT、XGBoost、RF、LightGBM、ET和MLP等6种常用于解决回归预测问题的机器学习算法,对热流的分布特征进行预测。实验结果表明,采用Stacking模型的预测精度优于多种基准模型。通过该模型得到的新的南极热流分布预测图,与其他传统方法所绘制的大规模估计热流分布图相比,更加契合南极洲热流的实际分布情况,展现出更为卓越的性能。 展开更多
关键词 集成学习 Stacking算法 大地热流 南极洲
在线阅读 下载PDF
基于改进白鲸优化算法的无人机航迹规划
13
作者 郑巍 徐晨昕 +2 位作者 熊小平 潘浩 樊鑫 《电光与控制》 北大核心 2026年第2期27-34,共8页
在航迹规划中,选择合适的算法对提高路径优化的效率和精确度至关重要。针对传统白鲸优化算法易陷入局部最优解的问题,提出了一种改进白鲸优化(EBWO)算法。首先,利用混沌反向学习策略来优化初始解的生成过程,以提高算法的初期收敛性和稳... 在航迹规划中,选择合适的算法对提高路径优化的效率和精确度至关重要。针对传统白鲸优化算法易陷入局部最优解的问题,提出了一种改进白鲸优化(EBWO)算法。首先,利用混沌反向学习策略来优化初始解的生成过程,以提高算法的初期收敛性和稳定性;其次,引入螺旋搜索策略增强全局搜索能力,使得算法在复杂环境中能够更有效地探索更广泛的解空间;最后,融入差分进化算法的变异种群个体,增强算法跳离局部最优解的能力。仿真实验结果表明,EBWO算法在航迹规划任务中相比其他算法生成了更高效的航迹方案,且其生成的航迹更加平稳。 展开更多
关键词 航迹规划 白鲸优化算法 混沌反向学习 螺旋搜索 差分进化算法
在线阅读 下载PDF
节能型泵控单元动态特性参数灵敏度分析与匹配优化
14
作者 王飞 刘天浩 +2 位作者 刘焱 刘克毅 艾超 《机电工程》 北大核心 2026年第1期65-72,116,共9页
针对节能型泵控单元因参数耦合、强非线性导致系统动态性能不足的问题,提出了一种融合Sobol灵敏度分析与遗传算法优化的方法,进行了节能型泵控单元参数匹配设计。首先,建立了节能型泵控单元的数学模型;然后,采用Sobol法对泵控单元参数... 针对节能型泵控单元因参数耦合、强非线性导致系统动态性能不足的问题,提出了一种融合Sobol灵敏度分析与遗传算法优化的方法,进行了节能型泵控单元参数匹配设计。首先,建立了节能型泵控单元的数学模型;然后,采用Sobol法对泵控单元参数进行了灵敏度分析,确定了定量泵排量D_(p)和电机转动惯量J_(L)是影响泵控单元动态特性的关键参数,并采用了遗传算法对识别的关键参数进行了优化,进一步进行了两种排量泵与三种转动惯量的泵控单元动态特性对比仿真分析;最后,搭建了泵控单元测试平台,进行了定排量-变转动惯量和变排量-定转动惯量的压力阶跃响应特性测试。研究结果表明:当泵排量为25 mL/r,电机转动惯量为40 kg·cm^(2)、80 kg·cm^(2)和120 kg·cm^(2)时,对应系统响应时间分别为63 ms、77 ms和107 ms;电机转动惯量为40 kg·cm^(2),泵排量为5 mL/r和25 mL/r时,对应系统响应时间分别为63 ms和92 ms;验证了Sobol灵敏度分析结合遗传算法优化方法在节能泵控制单元动态特性参数分析和优化中的有效性。该研究结果可以为节能型泵控单元工程设计与应用提供有效依据和参考。 展开更多
关键词 节能型泵控单元 动态特性优化 Sobol灵敏度分析 遗传算法优化 参数匹配 遗传算法
在线阅读 下载PDF
基于变分量子的离散对数求解算法
15
作者 张兴兰 容潇军 《计算机科学》 北大核心 2026年第1期353-362,共10页
离散对数问题是数论中的一个重要问题,因其求解困难,经典计算机没有高效的算法可以解决这一难题,故离散对数问题被广泛用于公钥密码体系中,而一旦离散对数问题被破解,将直接威胁密码系统的安全。但随着量子计算理论的引入,人们开始考虑... 离散对数问题是数论中的一个重要问题,因其求解困难,经典计算机没有高效的算法可以解决这一难题,故离散对数问题被广泛用于公钥密码体系中,而一旦离散对数问题被破解,将直接威胁密码系统的安全。但随着量子计算理论的引入,人们开始考虑采用量子计算机解决离散对数问题。目前求解离散对数问题的量子算法基本都基于Shor算法,但Shor算法由于自身的局限性,大多存在量子线路深度过大、使用量子比特数过多、后处理步骤复杂等问题,Shor算法难以在有噪声的中等规模量子(Noisy Intermediate-scale Quantum,NISQ)计算机上实现。为了解决这些问题,提出了基于变分量子的离散对数求解算法。首先,利用量子计算的并行性来计算参数化量子态的模幂,并设计标记解线路,将符合离散对数问题的解映射到辅助位上。然后,通过经典优化器不断对含参量子线路中的参数进行调整,使设计好的损失函数不断降低。最后,将经典优化器调整后的参数提出,并放入测量线路中进行测量,即可以较高的概率得到离散对数问题的解。与Shor算法相比,基于变分量子的离散对数求解算法减少了所需量子比特,同时将量子线路的深度减小了近一半。此外,还给出了详细的量子线路设计并用Python中的Qiskit包验证了所提算法的正确性。 展开更多
关键词 量子计算 变分量子算法 离散对数问题 Shor算法 Qiskit
在线阅读 下载PDF
基于改进模拟退火的防城港市国土空间规划分区优化方法
16
作者 张金亭 张健成 +2 位作者 陈奕云 杨魁 吴秀 《地理科学》 北大核心 2026年第1期205-215,共11页
为了解决现有综合指标评定法开展规划分区划定在科学性、实用性等方面存在的局限性,提出一种基于改进模拟退火的规划分区方法,使用FLUS-Markov模型进行模拟预测,基于优势权重构建区域未来土地利用格局,通过海量迭代和基于地类属性差异... 为了解决现有综合指标评定法开展规划分区划定在科学性、实用性等方面存在的局限性,提出一种基于改进模拟退火的规划分区方法,使用FLUS-Markov模型进行模拟预测,基于优势权重构建区域未来土地利用格局,通过海量迭代和基于地类属性差异的改进Calinski-Harabasz指数确定最佳规划分区方案,并以广西防城港市为案例开展实证研究。主要研究结果如下:①构建的土地利用格局相比FLUS-Markov模型结果更能贴合现实地物边界,适应规划分区需求;②将具有迭代功能,兼顾全局和局部优化的改进模拟退火算法引入规划分区方法中,具有可行性和优越性;③通过对模拟退火算法的改进,提高了规划分区的科学性和效率:基于生态廊道和地类集聚区域生成初始方案,并通过带记忆的分区方案迭代,提高收敛速度;通过权衡分区精度与实用性之间的平衡,实现最优分区方案选取;使用基于地类属性差异的分区评价指标,进一步提升了规划分区结果的科学性。 展开更多
关键词 模拟退火 规划分区 优化算法 防城港
原文传递
基于改进河马算法的农业无人机路径规划
17
作者 韩涛 李婷婷 黄友锐 《农业机械学报》 北大核心 2026年第1期339-347,共9页
针对传统农用车辆的运输方式存在效率低、成本高以及安全性差的问题,提出了一种用于农业无人机路径规划的改进河马算法(Dynamic modified hippopotamus optimization, DMHO)。该算法综合了Lévy飞行、成长比例机制、自适应学习率的... 针对传统农用车辆的运输方式存在效率低、成本高以及安全性差的问题,提出了一种用于农业无人机路径规划的改进河马算法(Dynamic modified hippopotamus optimization, DMHO)。该算法综合了Lévy飞行、成长比例机制、自适应学习率的棱镜对立学习算法及随机扩散的优势,提升算法的全局搜索及探索能力。算法在23个经典基准函数的测试结果表明,与原始河马算法等8种算法相比,DMHO在21个函数上展现出最优性能。构建丘陵种植区域无人机飞行环境的三维地形,搭建农业无人机在此环境下的路径规划模型,设计满足多条件约束的代价函数。在3种不同复杂程度的飞行任务中,DMHO找寻的平均适应度最短,相较于原始河马算法标准差分别降低33.39%、72.81%和7.08%,表现出显著的优越性和稳定性。 展开更多
关键词 农业无人机 路径规划 河马算法
在线阅读 下载PDF
被编码的课程:算法逻辑支配下的课程本体异化与再定义
18
作者 常甜 马早明 《电化教育研究》 北大核心 2026年第1期99-105,共7页
在人工智能广泛嵌入教育实践的背景下,课程正经历一场由“被编码”所引发的深刻转型。算法逻辑不仅重塑了课程的生成机制与运行方式,更引发了课程本体的异化风险。算法从工具理性走向结构逻辑的演变体现了其知识政治性特征,通过平台系... 在人工智能广泛嵌入教育实践的背景下,课程正经历一场由“被编码”所引发的深刻转型。算法逻辑不仅重塑了课程的生成机制与运行方式,更引发了课程本体的异化风险。算法从工具理性走向结构逻辑的演变体现了其知识政治性特征,通过平台系统和数据模型渗透教育过程的路径,使课程由“文化实践”滑向“流程编排”。这一过程中,课程知识的形态、教育关系的主体间性、课程目的的价值导向均受到技术逻辑的重构与规训,呈现出知识扁平化、交往虚置化与育人目标效能化的异化现象。在此背景下,强调以“技术—人文”融合范式为基础,重建以教育逻辑为核心的课程本体,呼吁构建具有反思性、协商性与公共性的课程机制,以回应技术治理时代中教育的根本诉求。 展开更多
关键词 人工智能 课程本体 算法逻辑 技术异化
在线阅读 下载PDF
算法个性化定价的规制困境与纾解进路
19
作者 邹开亮 徐培杰 曾文琴 《北京科技大学学报(社会科学版)》 2026年第2期72-79,共8页
在数字经济时代,作为趋近一级价格歧视的定价方式,算法个性化定价是经营者实现利益进阶的新型工具,在给经营者带来发展机遇的同时,也引发了侵害消费者合法权益、破坏市场公平竞争生态、损害消费者整体福利等诸多隐患。面对算法个性化定... 在数字经济时代,作为趋近一级价格歧视的定价方式,算法个性化定价是经营者实现利益进阶的新型工具,在给经营者带来发展机遇的同时,也引发了侵害消费者合法权益、破坏市场公平竞争生态、损害消费者整体福利等诸多隐患。面对算法个性化定价这一新型定价模式,现行《消费者权益保护法》、《价格法》、《反垄断法》及《反不正当竞争法》等法律规范的适配性欠佳,全过程监管和协同监管存在不足,平台企业算法内控和消费者算法教育显著不力。预防并消减算法个性化定价之隐患,应当通过完善规范、强化监管和协同治理,三管齐下以突破算法个性化定价之规制困境,营造风清气正的数字经济生态。 展开更多
关键词 算法个性化定价 算法透明 算法控制 全过程协同监管
在线阅读 下载PDF
考虑故障分类的农业机械维修调度策略研究 被引量:1
20
作者 李雯 李玉城 杨启志 《农机化研究》 北大核心 2026年第1期102-109,共8页
面对农业机械化进程的快速发展,当前传统农业机械维修过程中资源匹配不合理、维修效率低的情况不利于我国农业机械化工作的全面开展。为此,基于车辆路径规划问题(Vehicle Routing Problem,VRP),将农机故障类型进行分类,并根据农机故障... 面对农业机械化进程的快速发展,当前传统农业机械维修过程中资源匹配不合理、维修效率低的情况不利于我国农业机械化工作的全面开展。为此,基于车辆路径规划问题(Vehicle Routing Problem,VRP),将农机故障类型进行分类,并根据农机故障不同类型匹配不同维修能力的维修站进行维修,以成本最小为目标构建农机维修匹配调度模型,提出了改进遗传算法(Improved Genetic Algorithm,IGA)进行求解;结合宁夏贺兰山东麓酿酒葡萄产区现有故障农机与维修站信息,对提出的调度策略和算法可行性进行验证,并与传统遗传算法(Genetic Algorithm,GA)、贪婪算法(Greedy Algorithm,Greedy A)进行对比。结果表明:相比于GA和Greedy A,IGA有着较强的收敛性和经济性,不易陷入局部最优;在调度结果上,IGA运行总时间较GA缩短了27.27%,调度总成本较Greedy A降低了10.28%,在农机维修实际作业中能在一定程度上提高维修效率并降低维修成本。 展开更多
关键词 农机维修调度 精英策略遗传算法 农机故障分类 酿酒葡萄生产
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部