期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
A low-carbon economic dispatch model for electricity market with wind power based on improved ant-lion optimisation algorithm 被引量:4
1
作者 Renwu Yan Yihan Lin +1 位作者 Ning Yu Yi Wu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期29-39,共11页
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri... Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases. 展开更多
关键词 ant-lion optimisation algorithm carbon trading Levi flight low-carbon economic dispatch wind power market
在线阅读 下载PDF
Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm 被引量:1
2
作者 Zong-ping Li Xu-dong Li +5 位作者 Xue-tong Yan Wu Wen Xiao-xin Zeng Rong-jia Zhu Ya-hui Wang Ling-zhi Yi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第7期1597-1609,共13页
Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the... Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance. 展开更多
关键词 Sintering process Proportioning Iron ore Multi-objective beluga whale optimisation algorithm Proportioning cost
原文传递
A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search for Medical Diagnostics
3
作者 Milan Tair Nebojsa Bacanin +1 位作者 Miodrag Zivkovic K.Venkatachalam 《Computers, Materials & Continua》 SCIE EI 2022年第7期959-982,共24页
There is a growing interest in the study development of artificial intelligence and machine learning,especially regarding the support vector machine pattern classification method.This study proposes an enhanced implem... There is a growing interest in the study development of artificial intelligence and machine learning,especially regarding the support vector machine pattern classification method.This study proposes an enhanced implementation of the well-known whale optimisation algorithm,which combines chaotic and opposition-based learning strategies,which is adopted for hyper-parameter optimisation and feature selection machine learning challenges.The whale optimisation algorithm is a relatively recent addition to the group of swarm intelligence algorithms commonly used for optimisation.The Proposed improved whale optimisation algorithm was first tested for standard unconstrained CEC2017 benchmark suite and it was later adapted for simultaneous feature selection and support vector machine hyper-parameter tuning and validated for medical diagnostics by using breast cancer,diabetes,and erythemato-squamous dataset.The performance of the proposed model is compared with multiple competitive support vector machine models boosted with other metaheuristics,including another improved whale optimisation approach,particle swarm optimisation algorithm,bacterial foraging optimisation algorithms,and genetic algorithms.Results of the simulation show that the proposed model outperforms other competitors concerning the performance of classification and the selected subset feature size. 展开更多
关键词 Whale optimisation algorithm chaotic initialisation oppositionbased learning optimisation DIAGNOSTICS
在线阅读 下载PDF
3D Path Optimisation of Unmanned Aerial Vehicles Using Q Learning-Controlled GWO-AOA
4
作者 K.Sreelakshmy Himanshu Gupta +3 位作者 Om Prakash Verma Kapil Kumar Abdelhamied A.Ateya Naglaa F.Soliman 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2483-2503,共21页
Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedi... Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedious tasks in hazardous environments.Their increased demand created the requirement for enabling the UAVs to traverse independently through the Three Dimensional(3D)flight environment consisting of various obstacles which have been efficiently addressed by metaheuristics in past literature.However,not a single optimization algorithms can solve all kind of optimization problem effectively.Therefore,there is dire need to integrate metaheuristic for general acceptability.To address this issue,in this paper,a novel reinforcement learning controlled Grey Wolf Optimisation-Archimedes Optimisation Algorithm(QGA)has been exhaustively introduced and exhaustively validated firstly on 22 benchmark functions and then,utilized to obtain the optimum flyable path without collision for UAVs in three dimensional environment.The performance of the developed QGA has been compared against the various metaheuristics.The simulation experimental results reveal that the QGA algorithm acquire a feasible and effective flyable path more efficiently in complicated environment. 展开更多
关键词 Archimedes optimisation algorithm grey wolf optimisation path planning reinforcement learning unmanned aerial vehicles
在线阅读 下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
5
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION Harris Hawks optimisation algorithm Complete Cross-Validation
在线阅读 下载PDF
Cloud-based data security transactions employing blowfish and spotted hyena optimisation algorithm
6
作者 Ch.Chakradhara Rao Tryambak Hiwarkar B.Santhosh Kumar 《Journal of Control and Decision》 EI 2023年第4期494-503,共10页
Because of its on-demand servicing and scalability features in cloud computing,security and confidentiality have converted to key concerns.Maintaining transaction information on thirdparty servers carries significant ... Because of its on-demand servicing and scalability features in cloud computing,security and confidentiality have converted to key concerns.Maintaining transaction information on thirdparty servers carries significant dangers so that malicious individuals trying for illegal access to information data security architecture.This research proposes a security-aware information transfer in the cloud-based on the blowfish algorithm(BFA)to address the issue.The user is verified initially with the identification and separate the imported data using pattern matching technique.Further,BFA is utilised to encrypt and save the data in cloud.This can safeguard the data and streamline the proof so that client cannot retrieve the information without identification which makes the environment secure.The suggested approach’s performance is evaluated using several metrics,including encryption time,decryption time,memory utilisation,and runtime.Compared to the existing methodology,the investigational findings clearly show that the method takes the least time to data encryption. 展开更多
关键词 Blowfish algorithm cloud environment data encryption spotted hyena optimisation algorithm user authentication
原文传递
Enhancing modelling accuracy of cascaded spline adaptive filters using the remora optimisation algorithm:application to real-time systems
7
作者 Lakshminarayana JANJANAM Suman Kumar SAHA Rajib KAR 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第11期1515-1535,共21页
We first introduce a new approach for optimising a cascaded spline adaptive filter(CSAF)to identify unknown nonlinear systems by using a meta-heuristic optimisation algorithm(MOA).The CSAF architecture combines Hammer... We first introduce a new approach for optimising a cascaded spline adaptive filter(CSAF)to identify unknown nonlinear systems by using a meta-heuristic optimisation algorithm(MOA).The CSAF architecture combines Hammerstein and Wiener systems,where the nonlinear blocks are implemented with the spline network.The algorithms used optimise the weights of the spline interpolation function and linear filter by using an adequately weighted cost function,leading to improved filter stability,steady state performance,and guaranteed convergence to globally optimal solutions.We investigate two CSAF architectures:Hammerstein–Wiener SAF(HW-SAF)and Wiener–Hammerstein SAF(WH-SAF)structures.These architectures have been designed using gradient-based approaches which are inefficient due to poor convergence speed,and produce suboptimal solutions in a Gaussian noise environment.To avert these difficulties,we estimate the design parameters of the CSAF architecture using four independent MOAs:differential evolution(DE),brainstorm optimisation(BSO),multi-verse optimiser(MVO),and a recently proposed remora optimisation algorithm(ROA).In ROA,the remora factor’s control parameters produce near-global optimal parameters with a higher convergence speed.ROA also ensures the most balanced exploration and exploitation phases compared to DE-,BSO-,and MVO-based design approaches.Finally,the identification results of three numerical and industryspecific benchmark systems,including coupled electric drives,a thermic wall,and a continuous stirred tank reactor,are presented to emphasise the effectiveness of the ROA-based CSAF design. 展开更多
关键词 Cascaded spline adaptive filter Nonlinear system identification Remora optimisation algorithm
原文传递
Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather
8
作者 Hanpeng Kou Tianlong Bu +2 位作者 Leer Mao Yihong Jiao Chunming Liu 《Energy Engineering》 EI 2024年第4期1027-1048,共22页
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is... In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network. 展开更多
关键词 Decentralised wind power network loss correction siting and capacity determination reactive voltage control two-stage model manta ray foraging optimisation algorithm
在线阅读 下载PDF
Artificial Intelligence Regulation and Machine Translation Ethics
9
作者 Xiaojun ZHANG 《译苑新谭》 2024年第2期1-14,共14页
The technological breakthroughs in generative artificial intelligence,represented by ChatGPT,have brought about significant social changes as well as new problems and challenges.Generative artificial intelligence has ... The technological breakthroughs in generative artificial intelligence,represented by ChatGPT,have brought about significant social changes as well as new problems and challenges.Generative artificial intelligence has inherent flaws such as language imbalance,algorithmic black box,and algorithmic bias,and at the same time,it has external risks such as algorithmic comfort zone,data pollution,algorithmic infringement,and inaccurate output.These problems lead to the difficulty in legislation for the governance of generative artificial intelligence.Taking the data contamination incident in Google Translate as an example,this article proposes that in the process of constructing machine translation ethics,the responsibility mechanism of generative artificial intelligence should be constructed around three elements:data processing,algorithmic optimisation,and ethical alignment. 展开更多
关键词 artificial intelligence regulation machine translation ethics data processing algorithmic optimisation ethical alignment
原文传递
EEG signal artefact removal using flower pollination fractional calculus optimisation
10
作者 Jayalaxmi Anem G.Sateeshkumar R.Madhu 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第2期262-276,共15页
Purpose-The main aim of this paper is to design a technique for improving the quality of EEG signal by removing artefacts which is obtained during acquisition.Initially,pre-processing is done on EEG signal for quality... Purpose-The main aim of this paper is to design a technique for improving the quality of EEG signal by removing artefacts which is obtained during acquisition.Initially,pre-processing is done on EEG signal for quality improvement.Then,by using wavelet transform(WT)feature extraction is done.The artefacts present in the EEG are removed using deep convLSTM.This deep convLSTM is trained by proposed fractional calculus based flower pollination optimisation algorithm.Design/methodology/approach-Nowadays’EEG signals play vital role in the field of neurophysiologic research.Brain activities of human can be analysed by using EEG signals.These signals are frequently affected by noise during acquisition and other external disturbances,which lead to degrade the signal quality.Denoising of EEG signals is necessary for the effective usage of signals in any application.This paper proposes a new technique named as flower pollination fractional calculus optimisation(FPFCO)algorithm for the removal of artefacts fromEEGsignal through deep learning scheme.FPFCOalgorithmis the integration of flower pollination optimisation and fractional calculus which takes the advantages of both the flower pollination optimisation and fractional calculus which is used to train the deep convLSTM.The existed FPO algorithm is used for solution update through global and local pollinations.In this case,the fractional calculus(FC)method attempts to include the past solution by including the second order derivative.As a result,the suggested FPFCO algorithm approaches the best solution faster than the existing flower pollination optimization(FPO)method.Initially,5 EEGsignals are contaminated by artefacts such asEMG,EOG,EEGand randomnoise.These contaminatedEEG signals are pre-processed to remove baseline and power line noises.Further,feature extraction is done by using WTand extracted features are applied to deep convLSTM,which is trained by proposed fractional calculus based flower pollination optimisation algorithm.FPFCO is used for the effective removal of artefacts from EEG signal.The proposed technique is compared with existing techniques in terms of SNR and MSE.Findings-The proposed technique is compared with existing techniques in terms of SNR,RMSE and MSE.Originality/value-100%. 展开更多
关键词 Wavelet transform Deep convLSTM Flower pollination optimisation algorithm Fractional calculus EEG MSE RMSE SNR
在线阅读 下载PDF
Deep learning:an study on financial crisis forewarning in small and medium-sized listed enterprises
11
作者 Shaonan Pang Lixia Du 《Journal of Control and Decision》 2025年第1期159-166,共8页
Early warning of financial crisis will greatly promote the stable development of small and medium-sized listed enterprises(listed SMEs).In this article,13 warning indicators were selected for financial crisis predicti... Early warning of financial crisis will greatly promote the stable development of small and medium-sized listed enterprises(listed SMEs).In this article,13 warning indicators were selected for financial crisis prediction from five aspects:profit level,debt service level,business level,cash level,and development level.Then,the parameters of the long short-term memory(LSTM)neural network model were optimised by the whale optimisation algorithm(WOA),resulting in the WOA-LSTM model.The WOA-LSTM model achieved an accuracy of 0.975 in predicting financial crises for listed SMEs.The performance of the WOA-LSTM model was significantly enhanced when using the filtered 13 indicators as inputs,compared to using the original 24 indicators.The findings prove the dependability of the WOA-LSTM model in warning financial crises of listed SMEs and the feasibility of its application in practice. 展开更多
关键词 Deep learning small and medium-sized listed enterprise financial crisis whale optimisation algorithm
原文传递
NDRank: optimised parallel search for weather analogues
12
作者 David Martins Miguel Ferreira João Nuno Silva 《Big Earth Data》 EI CSCD 2023年第2期276-297,共22页
Global meteorology data are now widely used in various areas, but one of its applications, weather analogues, still require exhaustive searches on the whole historical data. We present two optimisations for the state-... Global meteorology data are now widely used in various areas, but one of its applications, weather analogues, still require exhaustive searches on the whole historical data. We present two optimisations for the state-of-the-art weather analogue search algorithms: a parallelization and a heuristic search. The heuristic search (NDRank) limits of the final number of results and does initial searches on a lower resolution dataset to find candidates that, in the second phase, are locally validated. These optimisations were deployed in the Cloud and evaluated with ERA5 data from ECMWF. The proposed parallelization attained speedups close to optimal, and NDRank attains speedups higher than 4. NDRank can be applied to any parallel search, adding similar speedups. A substantial number of executions returned a set of analogues similar to the existing exhaustive search and most of the remaining results presented a numerical value difference lower than 0.1%. The results demonstrate that it is now possible to search for weather analogues in a faster way (even compared with parallel searches) with results with little to no error. Furthermore, NDRank can be applied to existing exhaustive searches, providing faster results with small reduction of the precision of the results. 展开更多
关键词 Multidimensional arrays weather analogues search parallel computing algorithm optimisation
原文传递
Modelling and mathematical results arising from ferromagnetic problems
13
作者 DESCLOUX Jean FLUECK Michel RAPPAZ Jacques 《Science China Mathematics》 SCIE 2012年第5期1053-1067,共15页
Abstract In this article, we investigate the equations of magnetostaties for a configuration where a ferromagnetic material occupies a bounded domain and is surrounded by vacuum. Furthermore, the ferromagnetic law tak... Abstract In this article, we investigate the equations of magnetostaties for a configuration where a ferromagnetic material occupies a bounded domain and is surrounded by vacuum. Furthermore, the ferromagnetic law takes the form B=μ0μr(|H|)Hi i.e., the magnetizing field H and the magnetic induction B are collinear, but the relative permeability μr is allowed to depend on the modulus of H. We prove the well-posedness of the magnetostatic problem under suitable convexity assumptions, and the convergence of several iterative methods, both for the original problem set in the Beppo-Levi space W1(R3), and for a finite-dimensional approximation. The theoretical results are illustrated by numerical examples, which capture the known physical phenomena. 展开更多
关键词 FERROMAGNETISM nonlinear elliptic problems finite element methods optimisation algorithms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部