期刊文献+
共找到280,331篇文章
< 1 2 250 >
每页显示 20 50 100
基于IWOA-BP算法的金属结构弱磁检测缺陷量化研究
1
作者 樊梦 童博 +3 位作者 高晨 姚中原 张宇 胡博 《机械强度》 北大核心 2025年第3期113-120,共8页
金属结构被广泛用于工业界,在役金属结构受拉压疲劳载荷易产生裂纹缺陷,为实现金属结构裂纹缺陷的定量化检测,研究了一种基于反向传播(Back Propagation,BP)神经网络的金属结构弱磁检测缺陷定量分析方法。针对BP神经网络在参数调整时的... 金属结构被广泛用于工业界,在役金属结构受拉压疲劳载荷易产生裂纹缺陷,为实现金属结构裂纹缺陷的定量化检测,研究了一种基于反向传播(Back Propagation,BP)神经网络的金属结构弱磁检测缺陷定量分析方法。针对BP神经网络在参数调整时的效果欠佳、效率低等问题,采用基于Sine混沌映射的改进鲸鱼优化算法(Improved Whale Optimization Algorithm,IWOA)对BP神经网络参数调整方式进行优化,兼顾全局寻优的同时提高局部寻优的能力,进而将IWOA搜索到的最优参数赋值给BP神经网络,提高网络初始参数的质量。以人工矩形槽模拟裂纹,对矩形槽的长度、宽度、深度进行反演定量。结果表明,IWOA-BP神经网络预测的平均精度均在80%以上,深度、长度、宽度预测精度分别提高了106.72%、9.68%、6.86%。 展开更多
关键词 弱磁检测 金属结构 BP神经网络 鲸鱼算法 iwoa-BP神经网络
在线阅读 下载PDF
基于iWOA-iTransformer模型的物料需求预测 被引量:1
2
作者 胡昊 张剑飞 《高师理科学刊》 2025年第4期27-33,40,共8页
传统预测方法往往无法处理复杂、非线性的预测任务,针对这一问题,建立了iWOA-iTransformer模型。通过改进的鲸鱼优化算法优化Transformer改进模型的超参数,建立适用于多变量的非线性预测模型——iWOA-iTransformer模型。使用阿里云基础... 传统预测方法往往无法处理复杂、非线性的预测任务,针对这一问题,建立了iWOA-iTransformer模型。通过改进的鲸鱼优化算法优化Transformer改进模型的超参数,建立适用于多变量的非线性预测模型——iWOA-iTransformer模型。使用阿里云基础设施供应链库存管理决策数据集对模型进行了实验验证,结果表明,iWOA-iTransformer模型在物料需求预测上具有较高的准确性。 展开更多
关键词 物料需求预测 iwoa算法 iTransformer模型
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
3
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于IWOA-BPNN模型的金属结构件生产流程时间预测
4
作者 孟荣华 王佳怡 +2 位作者 吴正佳 邓少华 雷定坤 《工业工程》 2025年第3期42-51,共10页
针对大型结构件制造阶段多且各阶段关系复杂导致流程时间精准预测难度大的问题,提出了“特征提取—模型构建—精度提升—结果对比”的解决思路。基于历史数据,利用PCA高效滤取影响流程时间预测值的特征参数,降低数据冗余性;设计最小流... 针对大型结构件制造阶段多且各阶段关系复杂导致流程时间精准预测难度大的问题,提出了“特征提取—模型构建—精度提升—结果对比”的解决思路。基于历史数据,利用PCA高效滤取影响流程时间预测值的特征参数,降低数据冗余性;设计最小流程时间的BPNN预测模型的结构和初始参数;改进鲸鱼群算法优化其初始权重和阈值,以提升模型预测精度。利用Plant Simulation仿真生成了增强数据,构建历史数据加增强数据的样本库,验证模型与精度提升方法的有效性。结果表明,本文所提方法各项误差指标更小,具有更快的迭代速度和更优的最佳适应度值,为大型构件流程时间的精准预测提供了新的解决思路。 展开更多
关键词 改进鲸鱼群算法(iwoa) BP神经网络 流程时间预测 多阶段加工
在线阅读 下载PDF
基于IWOA-BERT的磨煤机故障预警
5
作者 段明达 张胜 《振动与冲击》 北大核心 2025年第11期288-294,共7页
实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过... 实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过改进传统鲸鱼算法的收敛因子和引入高斯变异算子来增强算法的寻优能力;其次,选取与磨煤机故障相关的特征参数作为建模变量,利用改进鲸鱼算法优化BERT模型的超参数,建立故障预警模型;然后,计算正常状态数据中每个滑动窗口的相似度均值,选取最小值乘以阈值系数确定预警阈值;最后,根据专家系统推理预警时刻的故障类型并给出检修指导。将所提方法应用于某350 MW机组磨煤机的运行中,结果表明模型的预测准确率高,且能提前24 s给出预警信息,为工程应用提供了参考。 展开更多
关键词 磨煤机 故障预警 BERT算法 改进鲸鱼优化算法(iwoa) 专家系统
在线阅读 下载PDF
基于IWOA-LightGBM的煤自燃程度预测方法研究
6
作者 臧燕杰 《中国安全科学学报》 北大核心 2025年第S1期64-70,共7页
为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过SPSS 27分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(... 为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过SPSS 27分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(WOA)易陷入局部最优的问题,引入Circle混沌映射、自适应权重及最优领域扰动策略改进其全局搜索能力,进而优化LightGBM超参数以提升预测精度并抑制过拟合;最后,将该模型应用于新疆沙吉海煤矿实际预测场景。结果表明:IWOA-LightGBM模型相较于其他模型,在测试样本中的准确率A分别提高13.33%、26.66%、20%、20%、13.33%;精确率P分别提高12.23%、24.45%、18.89%、18.89%、12.23%;召回率R分别提高13.1%、23.02%、18.1%、16.07%、10.56%;F_( 1)分别提高12.56%、23.79%、18.52%、17.58%、13.15%。模型在复杂条件下的可靠性与稳定性,展现出优于传统模型的泛化性与鲁棒性,能够为矿井煤自燃灾害预警提供了新的技术方案。 展开更多
关键词 煤自燃 改进鲸鱼优化算法(iwoa) 轻量级梯度提升机(LightGBM) 核主成分分析法(KPCA) 预测模型
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
7
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
8
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
9
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于IWOA-LightGBM模型的矿用挖掘机发动机故障诊断研究
10
作者 顾清华 白书宇 王丹 《矿业研究与开发》 北大核心 2025年第9期184-191,共8页
针对矿用挖掘机发动机故障类别不均衡,导致故障诊断精度不高的问题,提出了一种改进的鲸鱼算法(WOA)优化轻量级梯度提升机(LightGBM)的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法(RFECV)对采集的挖掘机发动机... 针对矿用挖掘机发动机故障类别不均衡,导致故障诊断精度不高的问题,提出了一种改进的鲸鱼算法(WOA)优化轻量级梯度提升机(LightGBM)的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法(RFECV)对采集的挖掘机发动机故障数据的特征进行提取,删除不相关的特征。其次,采用Focal-Loss改进LightGBM的损失函数,提出一种改进的WOA对LightGBM的超参数寻优,构建新的诊断模型。最后,利用某矿山挖掘机发动机故障数据进行验证,并与常见的集成模型、调优框架和诊断算法进行对比分析。结果表明:所提出的矿用挖掘机发动机故障诊断模型IWOA-LightGBM的准确率和F1分数分别为98.08%和98.53%,诊断性能较好,可为矿山机械设备的智能诊断提供参考。 展开更多
关键词 矿用挖掘机 发动机 故障诊断 递归特征交叉验证消除法 轻量级梯度提升机 鲸鱼算法
原文传递
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
11
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) Improved Whale Optimization algorithm(iwoa) unequal clustering
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究
12
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 U-Net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
13
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
基于IWOA-CNN-LSTM模型的光伏发电功率预测
14
作者 王琦 徐晓光 《曲阜师范大学学报(自然科学版)》 2025年第4期97-102,共6页
该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实... 该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实现对输入数据高维特征的提取和拟合来进行预测,提高了模型预测精度.基于澳大利亚某光伏电站数据的实验结果表明,与其他模型相比,所提出的预测模型具有更高的精度. 展开更多
关键词 光伏功率预测 卷积神经网络 长短期记忆网络 鲸鱼优化算法
在线阅读 下载PDF
改进IWOA寻优算法在锂电池健康度评估中的应用
15
作者 殷捷 彭兴 +1 位作者 顾江其 鲁怡兰 《信息技术》 2025年第5期39-44,共6页
为准确判定锂电池剩余使用寿命,针对改进IWOA寻优算法在锂电池健康度评估中的应用展开研究。依照改进IWOA寻优算法模型,定义鲸鱼行为特征,并完善具体的寻优算法表达式,再以此为基础,计算锂电池短期负荷量,实现基于改进IWOA寻优算法的锂... 为准确判定锂电池剩余使用寿命,针对改进IWOA寻优算法在锂电池健康度评估中的应用展开研究。依照改进IWOA寻优算法模型,定义鲸鱼行为特征,并完善具体的寻优算法表达式,再以此为基础,计算锂电池短期负荷量,实现基于改进IWOA寻优算法的锂电池负荷分析。针对锂电池负荷数据实施分解降噪处理,通过重构健康度评估相空间的方式,估算锂电池的电量退化能力,完成基于改进IWOA寻优算法的锂电池健康度评估。实验结果表明,应用上述方法可以准确判定锂电池剩余使用寿命,符合精准评估电池元件健康度的实际应用需求。 展开更多
关键词 iwoa寻优算法 锂电池 使用寿命 健康度评估 电量退化
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
16
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
基于IWOA-LMBP的水稻插秧机可靠性预测
18
作者 文昌俊 陈凡 +1 位作者 康锁 陈洋洋 《湖北工业大学学报》 2025年第2期1-10,共10页
针对水稻插秧机可靠性评价存在明显滞后的问题,提出一种创新的解决方案:构建改进鲸鱼算法-列文伯格·马夸德优化的BP神经网络可靠性预测模型。其设计思路如下:首先,引入Chebyshev混沌策略,以增强初始种群的多样性;其次,采用“双阶... 针对水稻插秧机可靠性评价存在明显滞后的问题,提出一种创新的解决方案:构建改进鲸鱼算法-列文伯格·马夸德优化的BP神经网络可靠性预测模型。其设计思路如下:首先,引入Chebyshev混沌策略,以增强初始种群的多样性;其次,采用“双阶梯”和“双山谷”非线性自适应因子,动态平衡算法的全局搜索与局部勘探能力;最后,结合趋优透镜反向学习策略,以更新个体位置,进一步提升个体质量,有效帮助算法跳出局部最优。通过6个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验可知,IWOA具有更好的寻优性能。随后,利用现场跟踪获取的水稻插秧机故障数据,建立IWOA-LMBP模型。为了全面评估该模型的性能,选取MAE、RMSE、R2作为网络模型的评价指标,并将其与其他5种模型进行对比。结果表明:采用IWOA-LMBP模型进行预测时,效果更好。 展开更多
关键词 水稻插秧机 改进鲸鱼算法 趋优透镜反向学习 LMBP神经网络 可靠性预测
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
19
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
基于IWOA-LSTM算法的钢筋混凝土结构损伤检测研究
20
作者 吕思思 《计算机应用文摘》 2025年第19期126-129,共4页
针对现有方法对混凝土损伤位置定位不准确的问题,文章提出一种基于IWOA-LSTM算法的钢筋混凝土结构损伤检测方法。该方法通过改进鲸鱼优化算法(IWOA)对长短期记忆网络(LSTM)的超参数进行优化,以提升其对复杂损伤信号的特征提取能力。首... 针对现有方法对混凝土损伤位置定位不准确的问题,文章提出一种基于IWOA-LSTM算法的钢筋混凝土结构损伤检测方法。该方法通过改进鲸鱼优化算法(IWOA)对长短期记忆网络(LSTM)的超参数进行优化,以提升其对复杂损伤信号的特征提取能力。首先从混合观测信号中分离出独立源信号,从而利用解混后的信号计算到达时间差,实现损伤位置的初步定位;其次通过对比损伤前后频率变化比,精确识别损伤区域,完成损伤检测全过程。实验结果表明,该方法可有效识别氯离子侵蚀所致的钢筋锈蚀及其引发的混凝土损伤位置,定位结果与实际损伤情况高度吻合;模拟定位精度较高,信号波动较小,实现了对损伤区域的精准检测,为全面获取钢筋混凝土结构损伤信息提供了可靠手段。 展开更多
关键词 iwoa LSTM 钢筋混凝土 结构损伤 检测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部