We collected the diseased blades of Larninaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identifie...We collected the diseased blades of Larninaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as A lteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deteriortion when infected by the bacterium. and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.展开更多
AIM: To assess the efficacy and safety of a compound containing alginic acid plus antacid (Topaal) compared to equal-strength antacid (Nacid) in patients with endoscopy-negative reflux disease (ENRD). METHODS:...AIM: To assess the efficacy and safety of a compound containing alginic acid plus antacid (Topaal) compared to equal-strength antacid (Nacid) in patients with endoscopy-negative reflux disease (ENRD). METHODS: A total of 121 patients with ENRD were randomized to receive Topaal (65 patients) or Nacid (56 patients) for 6 weeks, with a consultation every 3 weeks. The primary end-point assessment was the change in the severity of heartburn as evaluated using a visual analog scale (VAS) at 6 weeks. The secondary end-point assessments were the VAS at 3 weeks, the change of frequency of the reflux symptom, the change of quality of life and the adverse effects. RESULTS: Demographics of randomized subjects in each treatment group were comparable except that the Topaal group included more males. The baseline characteristics between the groups were similar. After 6 weeks of treatment, the reduction of VAS of heartburn was more prominent in the Topaal group (-6.29 cm vs -4.11 cm). At the 3m week, Topaal group showed greater reduction of VAS for heartburn (P= 0.0016), regurgitation (P=0.0006), vomiting (P=0.0373), and belching (P〈0.0001). The patients of the Topaal group had lower frequency of heartburn (P=0.0015) and pain (P= 0.0163) at the end of the 6-week treatment period. From the doctor's point of view, the Topaal group also showed significant reduction in the severity of heartburn (P= 0.0020), regurgitation (P=0.0081), vomiting (P= 0.0182), and belching (P= 0.0018) at the end of the treatment. The improvement of the quality of life was more remarkable in the Topaal group at the end of the 6-week treatment period (P〈 0.0001). For the adverse effect, there was no difference in both the groups. CONCLUSION: Topaal is more effective than Nacid for the treatment of symptoms presented by patients with ENRD.展开更多
-The rot disease of Laminaria occurs often in nurseries of sporeling and commercial cultivation in the sea and results in economic loss greatly. Usually the disease outbreaks accompanied with massive multiplication of...-The rot disease of Laminaria occurs often in nurseries of sporeling and commercial cultivation in the sea and results in economic loss greatly. Usually the disease outbreaks accompanied with massive multiplication of alginic acid decomposing bacteria. From the section of the decaying Lamuutria which resulted from the inoculation of alginic acid decomposing bacteria, it was observed that the bacteria invaded the epiderm of the Laminaria surface at first, then entered the ex-odermis, endodermis and pith. In addition, there were a great amount of bacteria in the intercellular region and a lot of free cells of the algae in the decaying areas. The wall of some free cells was decomposed, which led to soft tissue or disintegration. Alginic acid decomposing bacteria are normal epiphytic microorganisms growing on Lamuutria surface. These bacteria do not cause disease at normal environmental conditions. The experiments showed that the unfavourable conditions, e. g. , wounding, overcrowding, high temperature reduced the ability of antibacterial activity and made the algae more susceptible to the pathogens and favoured the multiplication of alginic acid decomposing bacteria and finally led to the disease outbreak. The unfavourable environmental factors which resulted from a variety of reasons were the main cause of the disease.展开更多
Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templa...Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templated by nanofibrillar alginic acid. An aqueous suspension of the alginic acid nanofibers was prepared by treating the brown seaweeds with sodium carbonate solution and subsequent precipitation in dilute hydrochloric acid. The alginic acid nanofibers of the organize into a hierarchical aligned phase in an acetic acid-sodium acetate buffer that was used to template silica-alginic acid composite films by evaporation induced self-assembly of alkoxysilane with nanofibrillar alginic acid. Calcination of the alginic acid template afforded hierarchical mesoporous silica glasses. Carbonization of the silica-alginic acid composites and subsequent etching the silica recovered mesoporous carbon supercapacitors.展开更多
It is reported that fermentative liquids with various concentrations of La and Nd affect the fer- mentation of alginic acid from the strain 342 of Azotobacter vinelandii.The results are as follows:When the concentrati...It is reported that fermentative liquids with various concentrations of La and Nd affect the fer- mentation of alginic acid from the strain 342 of Azotobacter vinelandii.The results are as follows:When the concentration of La or Nd was up to 100 ppm,the cell growth is stimulated and the production of alginic acid is promoted.The La or Nd in concentration higher than 200 ppm or 150 ppm inhibits the fermentation, respectively.As the concentration range of La is 0~100 ppm or that of Nd is 0~150 ppm,the yield of fixed nitrogen increases,and the ratio of c_M to c_G(c_M/c_G)decreases with the raise of the concentration of La or Nd.When the concentration range of La is 100~400 ppm and that of Nd is 150~400 ppm,the conclusion is contrary to the above mentioned result.展开更多
With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in...With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in this paper.Polyacrylamide(PAM)was synthesized by in-situ polymerization of acrylamide(AM)monomer.The obtained PAM was blended with polyethylene glycol(PEG)to prepare PAM/PEG hydrogels and form rigid support structures.Subsequently,the modified carbon nanotubes(S-CNTs)were incorpor-ated into sodium alginate(SA)and PAM/PEG.Finally,Na+was used to trigger SA self-assembly,which significantly improved the mechanical properties and electrical conductivity of the hydrogels,and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high tough-ness and strong electromagnetic interference(EMI)shielding efficiency(SE).The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa,which was 7.69%higher than that of PAM/PEG hydrogel(17.69 MPa).More en-couraging,the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt%was 32.92 dB,which is 113.21%higher than that of PAM/PEG hydrogels(15.44 dB).展开更多
Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessf...Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessfully prepared by blending ZIF-8 particles with sodium alginate,forming hydrogel beads in the presence of divalent metal ions,and subsequently subjecting them to high-temperature pyrolysis.Various characterization techniques were employed to evaluate the properties of the prepared materials.The introduction of a carbon framework on ZIF-8-derived particles effectively enhanced the conductivity of the prepared materials.The SA/ZIF-8(1.0)-C sample heated at 800℃exhibited a specific capacitance of up to 208 F g^(-1)at a current density of 0.5 A g^(-1)and outstanding cyclic stability.Even after 10,000 charge and discharge cycles,its capacitance retention rate remained as high as 87.14%.The symmetric supercapacitor constructed with the composite demonstrated an excellent energy density of 14.58 Wh kg^(-1)at a power capacity of 403.85 W kg^(-1).The implementation of this study provides new ideas and inspiration for the development of high-performance supercapacitors.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
The mini-review explores the potential use of alginates produced biotechnologically by bacteria for the development of various implantable biomaterials intended for bone and cartilage tissue regeneration in orthopedic...The mini-review explores the potential use of alginates produced biotechnologically by bacteria for the development of various implantable biomaterials intended for bone and cartilage tissue regeneration in orthopedics:the recent studies on the use of algal alginate-based biomaterials in the form of hydrogels,scaffolds,and microparticles for medical applications are considered as a potential opportunity to use bacterial alginate for these applications,taking into account the advantages of biotechnological production of a polymer with desired properties.The methods of producing different alginate-based biomaterials,the manufacturing of implantable medical devices using them,and the surgical techniques for bone and cartilage tissue regeneration using these materials for orthopedic purposes are discussed.展开更多
Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a n...Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a new two-dimensional hydrogel evaporator is urgently needed to alleviate this problem.Here,a double layer hydrogel evaporator was designed by twice vacuum filtration.Furthermore,through the arched design and the introduction of concentrated brine drainage system,the hydrogel evaporator has enhanced water transportation and tailored water transportation path.Such a unique drainage evaporation system greatly improves the stability of the evaporator.Thereby,a good balance is established between photothermal conversion and water supply,and solar energy is utilized efficiently.It can remain stable in continuous evaporation for up to 12 h with an excellent evaporation rate of 2.70 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the drainage system realized the 1.8×10^(-10)mol m^(-2)s^(-1)diffusion flux of concentrated brine.Through one-time freeze-drying preparation,an arch-shaped drainage evaporator was used to prepare an evaporation area of more than 20 cm^(2).With the self-made condensate collecting device in outdoor environment,the fresh water yield reaches 7.5 L m^(-2)d^(-1).This provides a new scheme for building a new hydrogel evaporator and solving the fresh water crisis.展开更多
Polymeric materials,known for their lightweight and strength,are widely used today.However,their non-biodegradable nature poses significant environmental challenges.This research aimed to develop biodegradable films f...Polymeric materials,known for their lightweight and strength,are widely used today.However,their non-biodegradable nature poses significant environmental challenges.This research aimed to develop biodegradable films from fruits and vegetables,using alginate as a binding agent.Using a completely randomized design,seven experimental sets were prepared with carrots,Kimju guava,and Namwa banana peel fibers as the primary materials and alginate as the secondary material at three levels:1.2,1.8,and 2.4 by weight.The solution technique was employed to create the samples.Upon testing mechanical and physical properties,experimental set 3,consisting of 60%guava and 1.8%alginate,emerged as the optimal ratio.This combination exhibited favorable physical properties,including a thickness of 0.26±0.02 mm,meeting the standards for food packaging films.Additionally,the tensile strength was 0.50±0.01 N/m²,and the elongation at break was 55.60±0.44%.Regarding chemical properties,the moisture content of 5.64±0.03%fell within the acceptable range for dried food.Furthermore,a 30-day soil burial test revealed that the sample from experimental set 3 exhibited the highest degradation rate.In conclusion,these findings suggest that guava can be a promising raw material for producing biodegradable plastics suitable for packaging applications.展开更多
The development of high-performance carbon-based composite hosts plays decisive roles in the electrochemistry of lithium sulfur batteries.Herein,a novel metal-ion induced gelation self-assembly technology is reported ...The development of high-performance carbon-based composite hosts plays decisive roles in the electrochemistry of lithium sulfur batteries.Herein,a novel metal-ion induced gelation self-assembly technology is reported to construct sodium alginate carbon(SAC)based polar hierarchical carbon composites with cross-linked network architecture and in-situ co-grown cross-linked polar nanoparticles.Interestingly,it shows high versatility to an extensive array of materials including metals,alloys,and metallic oxides.As a representative,NiCo alloy nanoparticles are chosen to obtain the SAC/NiCo composite host for sulfur in LSBs,which possess superior physical/chemical adsorption capabilities and catalytic conversion kinetics to polysulfide in virtue of synergistic interaction between the hierarchical pore structures and NiCo catalyst.The designed SAC/NiCo-S cathode shows superior electrochemical performance with excellent rate capacity(2 C:693.5 mAh/g)and enhanced cycling stability(764.3 mAh/g at 0.1 C after 240 cycles).This work provides a straightforward approach for fabricating multifunctional carbon composites with adjustable component for advanced energy storage system.展开更多
Moist-electric generation,a green and environmentally friendly energy harvesting technology,is undoubt-edly one of the effective methods to alleviate energy shortages and environmental damage.However,the lack of fiber...Moist-electric generation,a green and environmentally friendly energy harvesting technology,is undoubt-edly one of the effective methods to alleviate energy shortages and environmental damage.However,the lack of fiber-like moist-electric generators(MEGs)that combine continuous power generation and high electrical output performance has constrained the development of moist-electric in the fields of flexi-ble wearable and self-power supplies.In this work,sodium alginate(SA)/multi-walled carbon nanotubes(MWCNT)fibers with axial heterogeneous(axi-he)of oxygen-containing functional groups(Ocfgs)are prepared through a mold forming method in assistance with the coagulation process.The interaction be-tween axi-he MEG and moisture is investigated by analyzing the electrical signal changes of dried MEG under moisture stimulation.The maximum output voltage and current of axi-he MEG can reach 0.35 V and 1.92μA under the stimulation of moisture.Based on the regulation of Ocfgs,axi-he MEG has a con-tinuous high moist-electric performance and environmental adaptability.The maximum output power density(Pmo)of axi-he MEG with a length of only 2 cm can reach 27.37μW cm-2 at RH=90%,which exceeds most of the MEGs reported in literature.Meanwhile,a continuous output voltage of 0.33-0.37 V for more than 15 h can be obtained from this axi-he MEG.Thus,the axi-he MEG from Ocfg distribution design and mold forming method provides a new way of clean energy generation using moisture from the ambient environment,exhibiting enormous potential in energy supply for Internet of Things(IoT)devices.展开更多
Uncontrolled dendrite growth,sluggish reaction kinetics,and drastic side reactions on the anodeelectrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries.Traditio...Uncontrolled dendrite growth,sluggish reaction kinetics,and drastic side reactions on the anodeelectrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries.Traditional glass fiber(GF)separator with chemical inertness is almost ineffective in restricting these challenges.Herein,inspired by the ionic enrichment behavior of seaweed plants,a facile biomass species,anionic sodium alginate(SA),is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode.Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties,the as-obtained SA@GF separator could act as ion pump to boost the Zn^(2+)transference number(0.68),reduce the de-solvation energy barrier of hydrated Zn^(2+),and eliminate the undesired concentration polarization effect,which are verified by experimental tests,theoretical calculations,and finite element simulation,respectively.Based on these efficient modulation mechanisms,the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions.Therefore,the Zn‖Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h(1 mA cm^(-2)and 1 mAh cm^(-2)),exhibiting favorable competitiveness with previously reported separator modification strategies.Impressively,the Zn-MnO_(2)full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance,further verifying its practical application effect.This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.展开更多
Natural rubber(NR)foams are widely used.However,further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application.This study aims to create an ...Natural rubber(NR)foams are widely used.However,further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application.This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash(SCBA)and sodium alginate.The results showed that the SCBA was primarily composed of silica or silicon dioxide(87.52%by weight)and carbon(11.41%by weight).This study investigated the influence of the amount of sodium alginate(0-5 phr)used in the NR foam formation.The addition of SCBA on the NR foam affected the density,swelling behavior,and crosslink density of the foam.The results identified an optimal loading level that improved the density and morphology of the foam.The hardness and modulus of the NR foam increased with increasing amounts of SCBA,suggesting insufficient reinforcement.The NR exhibited the highest compressive stress at the SCBA concentration of 5 phr.This study facilitates the development of NR as green material and other support materials.展开更多
Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cann...Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cannot meet all clinical needs.In order to maximize therapeutic efficiency,herein,we fabricated a Tri-layer wound dressing,where the middle layer was fabricated via 3D-printing and composed of alginate,tragacanth and zinc oxide nanoparticles(ZnO NPs).Both upper and bottom layers were constructed using electrospinning technique;the upper layer was made of hydrophobic polycaprolactone to mimic epidermis,while the bottom layer consisted of Soluplus■ and insulin-like growth factor-1(IGF-1)to promote cell behavior.Swelling,water vapor permeability and tensile properties of the dressings were evaluated and the Tri-layer dressing exhibited impressive antibacterial activity and cell stimulation following by the release of ZnO NPs and IGF-1.Additionally,the Tri-layer dressing led to faster healing of full-thicknesswound in ratmodel compared to monolayer and Bilayer dressings.Overall,the evidence confirmed that the Trilayer wound dressing is extremely effective for full-thickness wound healing.展开更多
Sodium alginate(SA)is generally considered highly hydrophilic due to two hydroxyl groups and a carboxylate group on each pyranose ring.However,SA will form a gel after dissolving in water for a certain period.The two ...Sodium alginate(SA)is generally considered highly hydrophilic due to two hydroxyl groups and a carboxylate group on each pyranose ring.However,SA will form a gel after dissolving in water for a certain period.The two properties of SA,hydrophilicity and gelation,seem to be paradoxical.In this study,to explore the mechanism behind these paradoxical properties,the single-chain behaviors of SA in various liquid environments have been investigated by using single-molecule force spectroscopy(SMFS).In nonpolar solvents such as nonane,SA exhibits its single-chain inherent elasticity consistent with the theoretical elasticity derived from quantum mechanical(QM)calculations.Notably,the experimental curve of SA obtained in water shows a long plateau in the low force region.Further research reveals that this phenomenon is driven by the hydrophobic effect.Additionally,SA shows greater rigidity than its inherent elasticity in the middle and high force regions due to electrostatic repulsion between carboxylate groups on adjacent sugar rings.Comparative single-molecule studies suggest that SA exhibits considerable hydrophobicity,offering new insights into the gelation process in water.展开更多
As a biomass material with biodegradability and biocompatibility, sodium alginate (SA) is a good candidate for constructing hydrogels for tissue-mimicking and biomedical scaffold fabricating through extrusion-based 3D...As a biomass material with biodegradability and biocompatibility, sodium alginate (SA) is a good candidate for constructing hydrogels for tissue-mimicking and biomedical scaffold fabricating through extrusion-based 3D printing technology. However, the mechanical strength and stiffness of alginate hydrogels are still not comparable with biological tissues such as tendons and the printability of SA solutions is often poor. Here, a novel strategy for 3D printing of alginate hydrogels with high mechanical performance is developed by using glycerol as a co-solvent for SA solutions. The addition of glycerol (GL) enables the formation of a homogenous SA/GL solution with a high solid content of 12–20 wt.% and endows crosslinked SA hydrogels with high stretchability. By applying uniaxial stretches, hydrogel filaments prepared with concentrated SA/GL solutions reveal a high tensile strength of 36.6–161.3 MPa, Young's modulus of 59.2–1964.2 MPa, and elongation at break of 8.5 %–106.2 % due to the high orientated and closely packed SA chains. SA/GL solutions become more solid-like with increasing SA concentration, and the solution with a solid content of 16 wt.% exhibits optimal 3D printability because of the appropriate rheological properties and thixotropic behavior. By designing the deforming-and-fixing process, 3D printed high-strength alginate hydrogels with complex structures are prepared, broadening the application of alginate hydrogels in load-bearing and biomedical fields.展开更多
Alginate-based magnetic micro/millirobots have demonstrated significant potential for biomedical applications due to their flexible structures and capacity to carry various types of cargo,such as cells,enabling target...Alginate-based magnetic micro/millirobots have demonstrated significant potential for biomedical applications due to their flexible structures and capacity to carry various types of cargo,such as cells,enabling targeted therapy to specific diseased regions within the body.Their active therapy is typically achieved through magnetic actuation and magnetic heating,while monitored by medical imaging methods like CT which pose additional risks due to radiation exposure.In the last decades,a novel imaging method for superparamagnetic materials,known as magnetic particle imaging(MPI),has been under active development,offering not only positional tracking but also the ability to measure concentration and temperature.Here,we report the world's first MPI-traceable magnetic hydrogel robots,which employ a combination of iron oxide nanoflowers,NdFeB powder,and calcium alginate.Unlike previous magnetic alginate robots composed of a single magnetic material,the synergistic combination of NdFeB and nanoflowers enables these robots to exhibit triple magnetic functionalities:magnetic heating,locomotion at low magnetic fields,and tracking,all of which can be controlled using a single all-in-one electromagnetic coil system.The effects of various magnetization fields,as well as different concentrations of NdFeB and nanoflowers on the robots'magnetic properties were analyzed.This led to the development of three types of triple-function robots(spiral,droplet,and hybrid),with experimental results demonstrating biocompatibility,a magnetic heating temperature increase of over 10℃in plasma fluid under a magnetic field of 13 kA·m^(-1)at 200 kHz,locomotion speeds of up to 25 mm·s^(-1)in fields below 2 mT,and an MPI tracking error of 2.8 mm with a selection field of 0.4 mT·mm^(-1).Additionally,the robots'capacity for localized thermal therapy and selectively targeted cell delivery,as well as their locomotion within a medical phantom against a maximum flow of 50 mm·s^(-1)were demonstrated.展开更多
Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use ...Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.展开更多
基金The Hi-Tech Research and Development Program (863) of China (Youth Program) (No. 2004AA639770) and the Chinese NationalBasic Research Priorities Program (No. G1999012004)
文摘We collected the diseased blades of Larninaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as A lteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deteriortion when infected by the bacterium. and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.
文摘AIM: To assess the efficacy and safety of a compound containing alginic acid plus antacid (Topaal) compared to equal-strength antacid (Nacid) in patients with endoscopy-negative reflux disease (ENRD). METHODS: A total of 121 patients with ENRD were randomized to receive Topaal (65 patients) or Nacid (56 patients) for 6 weeks, with a consultation every 3 weeks. The primary end-point assessment was the change in the severity of heartburn as evaluated using a visual analog scale (VAS) at 6 weeks. The secondary end-point assessments were the VAS at 3 weeks, the change of frequency of the reflux symptom, the change of quality of life and the adverse effects. RESULTS: Demographics of randomized subjects in each treatment group were comparable except that the Topaal group included more males. The baseline characteristics between the groups were similar. After 6 weeks of treatment, the reduction of VAS of heartburn was more prominent in the Topaal group (-6.29 cm vs -4.11 cm). At the 3m week, Topaal group showed greater reduction of VAS for heartburn (P= 0.0016), regurgitation (P=0.0006), vomiting (P=0.0373), and belching (P〈0.0001). The patients of the Topaal group had lower frequency of heartburn (P=0.0015) and pain (P= 0.0163) at the end of the 6-week treatment period. From the doctor's point of view, the Topaal group also showed significant reduction in the severity of heartburn (P= 0.0020), regurgitation (P=0.0081), vomiting (P= 0.0182), and belching (P= 0.0018) at the end of the treatment. The improvement of the quality of life was more remarkable in the Topaal group at the end of the 6-week treatment period (P〈 0.0001). For the adverse effect, there was no difference in both the groups. CONCLUSION: Topaal is more effective than Nacid for the treatment of symptoms presented by patients with ENRD.
文摘-The rot disease of Laminaria occurs often in nurseries of sporeling and commercial cultivation in the sea and results in economic loss greatly. Usually the disease outbreaks accompanied with massive multiplication of alginic acid decomposing bacteria. From the section of the decaying Lamuutria which resulted from the inoculation of alginic acid decomposing bacteria, it was observed that the bacteria invaded the epiderm of the Laminaria surface at first, then entered the ex-odermis, endodermis and pith. In addition, there were a great amount of bacteria in the intercellular region and a lot of free cells of the algae in the decaying areas. The wall of some free cells was decomposed, which led to soft tissue or disintegration. Alginic acid decomposing bacteria are normal epiphytic microorganisms growing on Lamuutria surface. These bacteria do not cause disease at normal environmental conditions. The experiments showed that the unfavourable conditions, e. g. , wounding, overcrowding, high temperature reduced the ability of antibacterial activity and made the algae more susceptible to the pathogens and favoured the multiplication of alginic acid decomposing bacteria and finally led to the disease outbreak. The unfavourable environmental factors which resulted from a variety of reasons were the main cause of the disease.
文摘Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templated by nanofibrillar alginic acid. An aqueous suspension of the alginic acid nanofibers was prepared by treating the brown seaweeds with sodium carbonate solution and subsequent precipitation in dilute hydrochloric acid. The alginic acid nanofibers of the organize into a hierarchical aligned phase in an acetic acid-sodium acetate buffer that was used to template silica-alginic acid composite films by evaporation induced self-assembly of alkoxysilane with nanofibrillar alginic acid. Calcination of the alginic acid template afforded hierarchical mesoporous silica glasses. Carbonization of the silica-alginic acid composites and subsequent etching the silica recovered mesoporous carbon supercapacitors.
文摘It is reported that fermentative liquids with various concentrations of La and Nd affect the fer- mentation of alginic acid from the strain 342 of Azotobacter vinelandii.The results are as follows:When the concentration of La or Nd was up to 100 ppm,the cell growth is stimulated and the production of alginic acid is promoted.The La or Nd in concentration higher than 200 ppm or 150 ppm inhibits the fermentation, respectively.As the concentration range of La is 0~100 ppm or that of Nd is 0~150 ppm,the yield of fixed nitrogen increases,and the ratio of c_M to c_G(c_M/c_G)decreases with the raise of the concentration of La or Nd.When the concentration range of La is 100~400 ppm and that of Nd is 150~400 ppm,the conclusion is contrary to the above mentioned result.
基金supported by the National Natural Science Foundation of China(No.52163001)the Guizhou Provincial Science and Technology Program Project Grant,China(Qiankehe Platform Talents-CXTD[2021]005,Qiankehe Platform Talents-GCC[2022]010-1,Qiankehe Fuqi[2023]001,Qiankehe Platform Talents-GCC[2023]035,and Qiankehe Platform Talents-CXTD[2023]003)+3 种基金the Guizhou Minzu University Research Platform Grant,China(No.GZMUGCZX[2021]01)the Central Guided Local Science and Technology Development Funds Project,China(Qiankehe Zhong Yindi[2023]035)the Green Chemistry and Resource Environment Innovation Team of Guizhou Higher Education Institutions,China(Guizhou Education and Technology[2022]No.13)the Doctor Startup Fund of Guizhou Minzu University,China(No.GZMUZK[2024]QD77).
文摘With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in this paper.Polyacrylamide(PAM)was synthesized by in-situ polymerization of acrylamide(AM)monomer.The obtained PAM was blended with polyethylene glycol(PEG)to prepare PAM/PEG hydrogels and form rigid support structures.Subsequently,the modified carbon nanotubes(S-CNTs)were incorpor-ated into sodium alginate(SA)and PAM/PEG.Finally,Na+was used to trigger SA self-assembly,which significantly improved the mechanical properties and electrical conductivity of the hydrogels,and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high tough-ness and strong electromagnetic interference(EMI)shielding efficiency(SE).The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa,which was 7.69%higher than that of PAM/PEG hydrogel(17.69 MPa).More en-couraging,the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt%was 32.92 dB,which is 113.21%higher than that of PAM/PEG hydrogels(15.44 dB).
基金supports from the National Natural Science Foundation of China(22075034,22178037,and 22478047)Natural Science Foundation of Liaoning Province of China(2021-MS-303)the China Scholarship Council(CSC No 202008210171).
文摘Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessfully prepared by blending ZIF-8 particles with sodium alginate,forming hydrogel beads in the presence of divalent metal ions,and subsequently subjecting them to high-temperature pyrolysis.Various characterization techniques were employed to evaluate the properties of the prepared materials.The introduction of a carbon framework on ZIF-8-derived particles effectively enhanced the conductivity of the prepared materials.The SA/ZIF-8(1.0)-C sample heated at 800℃exhibited a specific capacitance of up to 208 F g^(-1)at a current density of 0.5 A g^(-1)and outstanding cyclic stability.Even after 10,000 charge and discharge cycles,its capacitance retention rate remained as high as 87.14%.The symmetric supercapacitor constructed with the composite demonstrated an excellent energy density of 14.58 Wh kg^(-1)at a power capacity of 403.85 W kg^(-1).The implementation of this study provides new ideas and inspiration for the development of high-performance supercapacitors.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金Supported by Russian Science Foundation,No.23-74-10027.
文摘The mini-review explores the potential use of alginates produced biotechnologically by bacteria for the development of various implantable biomaterials intended for bone and cartilage tissue regeneration in orthopedics:the recent studies on the use of algal alginate-based biomaterials in the form of hydrogels,scaffolds,and microparticles for medical applications are considered as a potential opportunity to use bacterial alginate for these applications,taking into account the advantages of biotechnological production of a polymer with desired properties.The methods of producing different alginate-based biomaterials,the manufacturing of implantable medical devices using them,and the surgical techniques for bone and cartilage tissue regeneration using these materials for orthopedic purposes are discussed.
基金the financial support of the National Natural Science Foundation of China(No.52075309)the Youth Innovation Team of Shaanxi Universities(21JP021)。
文摘Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a new two-dimensional hydrogel evaporator is urgently needed to alleviate this problem.Here,a double layer hydrogel evaporator was designed by twice vacuum filtration.Furthermore,through the arched design and the introduction of concentrated brine drainage system,the hydrogel evaporator has enhanced water transportation and tailored water transportation path.Such a unique drainage evaporation system greatly improves the stability of the evaporator.Thereby,a good balance is established between photothermal conversion and water supply,and solar energy is utilized efficiently.It can remain stable in continuous evaporation for up to 12 h with an excellent evaporation rate of 2.70 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the drainage system realized the 1.8×10^(-10)mol m^(-2)s^(-1)diffusion flux of concentrated brine.Through one-time freeze-drying preparation,an arch-shaped drainage evaporator was used to prepare an evaporation area of more than 20 cm^(2).With the self-made condensate collecting device in outdoor environment,the fresh water yield reaches 7.5 L m^(-2)d^(-1).This provides a new scheme for building a new hydrogel evaporator and solving the fresh water crisis.
基金funding from the Environmental Science Program for Academic Excellence and Community Research for Fiscal Year 2024,a financial resource of the Environmental Science and Technology Program,Faculty of Science,Buriram Rajabhat University.Additionally,Buriram Rajabhat University provided a publication budget.
文摘Polymeric materials,known for their lightweight and strength,are widely used today.However,their non-biodegradable nature poses significant environmental challenges.This research aimed to develop biodegradable films from fruits and vegetables,using alginate as a binding agent.Using a completely randomized design,seven experimental sets were prepared with carrots,Kimju guava,and Namwa banana peel fibers as the primary materials and alginate as the secondary material at three levels:1.2,1.8,and 2.4 by weight.The solution technique was employed to create the samples.Upon testing mechanical and physical properties,experimental set 3,consisting of 60%guava and 1.8%alginate,emerged as the optimal ratio.This combination exhibited favorable physical properties,including a thickness of 0.26±0.02 mm,meeting the standards for food packaging films.Additionally,the tensile strength was 0.50±0.01 N/m²,and the elongation at break was 55.60±0.44%.Regarding chemical properties,the moisture content of 5.64±0.03%fell within the acceptable range for dried food.Furthermore,a 30-day soil burial test revealed that the sample from experimental set 3 exhibited the highest degradation rate.In conclusion,these findings suggest that guava can be a promising raw material for producing biodegradable plastics suitable for packaging applications.
基金supported by National Natural Science Foundation of China(Nos.52372235,52073252,22379020,52002052,52302316)Science and Technology Department of Zhejiang Province(Nos.2023C01231,Q23E020046,LD22E020006,and LY21E020005)+1 种基金Zhejiang Provincial Postdoctoral Research Project(No.ZJ2023080)Key Research and Development Project of Science and Technology Department of Sichuan Province(No.2022YFSY0004).
文摘The development of high-performance carbon-based composite hosts plays decisive roles in the electrochemistry of lithium sulfur batteries.Herein,a novel metal-ion induced gelation self-assembly technology is reported to construct sodium alginate carbon(SAC)based polar hierarchical carbon composites with cross-linked network architecture and in-situ co-grown cross-linked polar nanoparticles.Interestingly,it shows high versatility to an extensive array of materials including metals,alloys,and metallic oxides.As a representative,NiCo alloy nanoparticles are chosen to obtain the SAC/NiCo composite host for sulfur in LSBs,which possess superior physical/chemical adsorption capabilities and catalytic conversion kinetics to polysulfide in virtue of synergistic interaction between the hierarchical pore structures and NiCo catalyst.The designed SAC/NiCo-S cathode shows superior electrochemical performance with excellent rate capacity(2 C:693.5 mAh/g)and enhanced cycling stability(764.3 mAh/g at 0.1 C after 240 cycles).This work provides a straightforward approach for fabricating multifunctional carbon composites with adjustable component for advanced energy storage system.
基金supported by the National Natural Science Foundation of China(No.22073015)the National Key R&D Program of China(No.2022YFB3704600).
文摘Moist-electric generation,a green and environmentally friendly energy harvesting technology,is undoubt-edly one of the effective methods to alleviate energy shortages and environmental damage.However,the lack of fiber-like moist-electric generators(MEGs)that combine continuous power generation and high electrical output performance has constrained the development of moist-electric in the fields of flexi-ble wearable and self-power supplies.In this work,sodium alginate(SA)/multi-walled carbon nanotubes(MWCNT)fibers with axial heterogeneous(axi-he)of oxygen-containing functional groups(Ocfgs)are prepared through a mold forming method in assistance with the coagulation process.The interaction be-tween axi-he MEG and moisture is investigated by analyzing the electrical signal changes of dried MEG under moisture stimulation.The maximum output voltage and current of axi-he MEG can reach 0.35 V and 1.92μA under the stimulation of moisture.Based on the regulation of Ocfgs,axi-he MEG has a con-tinuous high moist-electric performance and environmental adaptability.The maximum output power density(Pmo)of axi-he MEG with a length of only 2 cm can reach 27.37μW cm-2 at RH=90%,which exceeds most of the MEGs reported in literature.Meanwhile,a continuous output voltage of 0.33-0.37 V for more than 15 h can be obtained from this axi-he MEG.Thus,the axi-he MEG from Ocfg distribution design and mold forming method provides a new way of clean energy generation using moisture from the ambient environment,exhibiting enormous potential in energy supply for Internet of Things(IoT)devices.
基金supported by research grants from the National Natural Science Foundation of China(52173235,22008193,52106110)the Key Research and Development Project of Hainan Province(ZDYF2024SHFZ038)+2 种基金Venture&Innovation Support Program for Chongqing Overseas Returnees(CX2021018)Research Foundation of Chongqing University of Science and Technology(ckrc2021071)Numerical computations were performed on Hefei Advanced Computing Center.
文摘Uncontrolled dendrite growth,sluggish reaction kinetics,and drastic side reactions on the anodeelectrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries.Traditional glass fiber(GF)separator with chemical inertness is almost ineffective in restricting these challenges.Herein,inspired by the ionic enrichment behavior of seaweed plants,a facile biomass species,anionic sodium alginate(SA),is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode.Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties,the as-obtained SA@GF separator could act as ion pump to boost the Zn^(2+)transference number(0.68),reduce the de-solvation energy barrier of hydrated Zn^(2+),and eliminate the undesired concentration polarization effect,which are verified by experimental tests,theoretical calculations,and finite element simulation,respectively.Based on these efficient modulation mechanisms,the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions.Therefore,the Zn‖Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h(1 mA cm^(-2)and 1 mAh cm^(-2)),exhibiting favorable competitiveness with previously reported separator modification strategies.Impressively,the Zn-MnO_(2)full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance,further verifying its practical application effect.This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.
基金supported by the Thailand Science Research and Innovation,National Science Research and Innovation Fund and the Fundamental Fund(FF 2023).
文摘Natural rubber(NR)foams are widely used.However,further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application.This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash(SCBA)and sodium alginate.The results showed that the SCBA was primarily composed of silica or silicon dioxide(87.52%by weight)and carbon(11.41%by weight).This study investigated the influence of the amount of sodium alginate(0-5 phr)used in the NR foam formation.The addition of SCBA on the NR foam affected the density,swelling behavior,and crosslink density of the foam.The results identified an optimal loading level that improved the density and morphology of the foam.The hardness and modulus of the NR foam increased with increasing amounts of SCBA,suggesting insufficient reinforcement.The NR exhibited the highest compressive stress at the SCBA concentration of 5 phr.This study facilitates the development of NR as green material and other support materials.
基金support of Isfahan University of Medical Sciences(Project code No.#1401262).
文摘Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cannot meet all clinical needs.In order to maximize therapeutic efficiency,herein,we fabricated a Tri-layer wound dressing,where the middle layer was fabricated via 3D-printing and composed of alginate,tragacanth and zinc oxide nanoparticles(ZnO NPs).Both upper and bottom layers were constructed using electrospinning technique;the upper layer was made of hydrophobic polycaprolactone to mimic epidermis,while the bottom layer consisted of Soluplus■ and insulin-like growth factor-1(IGF-1)to promote cell behavior.Swelling,water vapor permeability and tensile properties of the dressings were evaluated and the Tri-layer dressing exhibited impressive antibacterial activity and cell stimulation following by the release of ZnO NPs and IGF-1.Additionally,the Tri-layer dressing led to faster healing of full-thicknesswound in ratmodel compared to monolayer and Bilayer dressings.Overall,the evidence confirmed that the Trilayer wound dressing is extremely effective for full-thickness wound healing.
基金financially supported by the National Natural Science Foundation of China(No.22273079)。
文摘Sodium alginate(SA)is generally considered highly hydrophilic due to two hydroxyl groups and a carboxylate group on each pyranose ring.However,SA will form a gel after dissolving in water for a certain period.The two properties of SA,hydrophilicity and gelation,seem to be paradoxical.In this study,to explore the mechanism behind these paradoxical properties,the single-chain behaviors of SA in various liquid environments have been investigated by using single-molecule force spectroscopy(SMFS).In nonpolar solvents such as nonane,SA exhibits its single-chain inherent elasticity consistent with the theoretical elasticity derived from quantum mechanical(QM)calculations.Notably,the experimental curve of SA obtained in water shows a long plateau in the low force region.Further research reveals that this phenomenon is driven by the hydrophobic effect.Additionally,SA shows greater rigidity than its inherent elasticity in the middle and high force regions due to electrostatic repulsion between carboxylate groups on adjacent sugar rings.Comparative single-molecule studies suggest that SA exhibits considerable hydrophobicity,offering new insights into the gelation process in water.
基金supported by the National Natural Science Foundation of China(Nos.52203025,52072193,52361165657,and U22A20131)the Shandong Provincial Natural Science Foundation(Nos.ZR2021JQ16,ZR2023YQ040,and ZR2022QE266)the Shandong Provincial College Students'Innovation and Entrepreneurship Training Program(No.S202311065122)。
文摘As a biomass material with biodegradability and biocompatibility, sodium alginate (SA) is a good candidate for constructing hydrogels for tissue-mimicking and biomedical scaffold fabricating through extrusion-based 3D printing technology. However, the mechanical strength and stiffness of alginate hydrogels are still not comparable with biological tissues such as tendons and the printability of SA solutions is often poor. Here, a novel strategy for 3D printing of alginate hydrogels with high mechanical performance is developed by using glycerol as a co-solvent for SA solutions. The addition of glycerol (GL) enables the formation of a homogenous SA/GL solution with a high solid content of 12–20 wt.% and endows crosslinked SA hydrogels with high stretchability. By applying uniaxial stretches, hydrogel filaments prepared with concentrated SA/GL solutions reveal a high tensile strength of 36.6–161.3 MPa, Young's modulus of 59.2–1964.2 MPa, and elongation at break of 8.5 %–106.2 % due to the high orientated and closely packed SA chains. SA/GL solutions become more solid-like with increasing SA concentration, and the solution with a solid content of 16 wt.% exhibits optimal 3D printability because of the appropriate rheological properties and thixotropic behavior. By designing the deforming-and-fixing process, 3D printed high-strength alginate hydrogels with complex structures are prepared, broadening the application of alginate hydrogels in load-bearing and biomedical fields.
基金supported by a Korea University Grantby the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)with Grant Number 2022R1A2C1003381。
文摘Alginate-based magnetic micro/millirobots have demonstrated significant potential for biomedical applications due to their flexible structures and capacity to carry various types of cargo,such as cells,enabling targeted therapy to specific diseased regions within the body.Their active therapy is typically achieved through magnetic actuation and magnetic heating,while monitored by medical imaging methods like CT which pose additional risks due to radiation exposure.In the last decades,a novel imaging method for superparamagnetic materials,known as magnetic particle imaging(MPI),has been under active development,offering not only positional tracking but also the ability to measure concentration and temperature.Here,we report the world's first MPI-traceable magnetic hydrogel robots,which employ a combination of iron oxide nanoflowers,NdFeB powder,and calcium alginate.Unlike previous magnetic alginate robots composed of a single magnetic material,the synergistic combination of NdFeB and nanoflowers enables these robots to exhibit triple magnetic functionalities:magnetic heating,locomotion at low magnetic fields,and tracking,all of which can be controlled using a single all-in-one electromagnetic coil system.The effects of various magnetization fields,as well as different concentrations of NdFeB and nanoflowers on the robots'magnetic properties were analyzed.This led to the development of three types of triple-function robots(spiral,droplet,and hybrid),with experimental results demonstrating biocompatibility,a magnetic heating temperature increase of over 10℃in plasma fluid under a magnetic field of 13 kA·m^(-1)at 200 kHz,locomotion speeds of up to 25 mm·s^(-1)in fields below 2 mT,and an MPI tracking error of 2.8 mm with a selection field of 0.4 mT·mm^(-1).Additionally,the robots'capacity for localized thermal therapy and selectively targeted cell delivery,as well as their locomotion within a medical phantom against a maximum flow of 50 mm·s^(-1)were demonstrated.
基金supported by the National Natural Science Foundation of China(No.22078244)Scientific research and development project of SINOPEC(No.222443)the Science and Technology Plans of Tianjin(No.20JCYBJC00120).
文摘Alginate is a natural polysaccharide polymer.Hydrogel filtration membranes prepared from alginate show excellent fouling resistance and controllable separation performance,but poor mechanical properties limit the use of algae hydrogels.In this study,Ba^(2+)/Ca^(2+)co-crosslinked alginate(Ba/CaAlg)hydrogel membrane was prepared by cross-linking sodium alginate with a blend aqueous solution of barium ions and calcium ions,and the membrane was applied to the separation of dyes/salts from dyeing wastewater.Compared with the CaAlg membrane,the Ba/CaAlg hydrogel membrane exhibited more stable structure,and the mechanical properties and salt tolerance of the membrane were significantly improved.The flux of Ba/CaAlg membrane for methyl blue/sodium chloride mixed solution reached 43.5 L m^(−2) h^(−1),which was significantly higher than that of CaAlg membrane.Besides,the Ba/CaAlg membrane showed higher dye rejection(>99.6%)and lower salt rejection(<8.2%).The structure of Ba/CaAlg membrane was preliminarily simulated by molecular dynamics,and the pore size and distribution of the membrane were calculated.The Ba/CaAlg membrane has a broad application prospect in dyes/salts separation.