Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient...Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient fluid supply in oil wells based on convolutional neural networks is proposed in this paper. Firstly, 5000 indicator diagrams with insufficient liquid supply were collected from the oilfield site, and a sample set was established after preprocessing;then based on the AlexNet model, combined with the characteristics of the indicator diagram, a convolutional neural network model including 4 layers of convolutional layers, 3 layers of down-pooling layers and 2 layers of fully connected layers is established. The backpropagation, ReLu activation function and dropout regularization method are used to complete the training of the convolutional neural network;finally, the performance of the convolutional neural network under different iteration times and network structure is compared, and the super parameter optimization of the model is completed. It has laid a good foundation for realizing the self-adaptive and intelligent matching of oil well production parameters and formation fluid supply conditions. It has certain application prospects. The results show that the accuracy of training and verification of the method exceeds 98%, which can meet the actual application requirements on site.展开更多
针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对...针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对输入数据量的要求;对后2层卷积层提取的特征信息批量归一化(batch normalization,BN),以加快网络的收敛速度;并使用带泄露线性整流(leaky rectified linear unit,LeakyReLU)函数对抑制神经元进行激活,从而提高模型的鲁棒性和特征提取能力。结果表明,该模型最终达到了95.12%的准确率,相比原结构识别精度提高了9.8%。验证了改进后方法能够对裂纹、气孔、夹渣、未熔合和未焊透5类不锈钢焊缝缺陷实现高精度分类。相比现有方法,其识别面更广,精度更高,具有一定的工程实践意义。展开更多
文摘Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient fluid supply in oil wells based on convolutional neural networks is proposed in this paper. Firstly, 5000 indicator diagrams with insufficient liquid supply were collected from the oilfield site, and a sample set was established after preprocessing;then based on the AlexNet model, combined with the characteristics of the indicator diagram, a convolutional neural network model including 4 layers of convolutional layers, 3 layers of down-pooling layers and 2 layers of fully connected layers is established. The backpropagation, ReLu activation function and dropout regularization method are used to complete the training of the convolutional neural network;finally, the performance of the convolutional neural network under different iteration times and network structure is compared, and the super parameter optimization of the model is completed. It has laid a good foundation for realizing the self-adaptive and intelligent matching of oil well production parameters and formation fluid supply conditions. It has certain application prospects. The results show that the accuracy of training and verification of the method exceeds 98%, which can meet the actual application requirements on site.
文摘针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对输入数据量的要求;对后2层卷积层提取的特征信息批量归一化(batch normalization,BN),以加快网络的收敛速度;并使用带泄露线性整流(leaky rectified linear unit,LeakyReLU)函数对抑制神经元进行激活,从而提高模型的鲁棒性和特征提取能力。结果表明,该模型最终达到了95.12%的准确率,相比原结构识别精度提高了9.8%。验证了改进后方法能够对裂纹、气孔、夹渣、未熔合和未焊透5类不锈钢焊缝缺陷实现高精度分类。相比现有方法,其识别面更广,精度更高,具有一定的工程实践意义。