期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
Intelligent Recognition Method of Insufficient Fluid Supply of Oil Well Based on Convolutional Neural Network 被引量:2
1
作者 Yanfeng He Zhenlong Wang +2 位作者 Bin Liu Xiang Wang Bingchao Li 《Open Journal of Yangtze Oil and Gas》 2021年第3期116-128,共13页
Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient... Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient fluid supply in oil wells based on convolutional neural networks is proposed in this paper. Firstly, 5000 indicator diagrams with insufficient liquid supply were collected from the oilfield site, and a sample set was established after preprocessing;then based on the AlexNet model, combined with the characteristics of the indicator diagram, a convolutional neural network model including 4 layers of convolutional layers, 3 layers of down-pooling layers and 2 layers of fully connected layers is established. The backpropagation, ReLu activation function and dropout regularization method are used to complete the training of the convolutional neural network;finally, the performance of the convolutional neural network under different iteration times and network structure is compared, and the super parameter optimization of the model is completed. It has laid a good foundation for realizing the self-adaptive and intelligent matching of oil well production parameters and formation fluid supply conditions. It has certain application prospects. The results show that the accuracy of training and verification of the method exceeds 98%, which can meet the actual application requirements on site. 展开更多
关键词 Degree of Insufficient Fluid Supply in Oil Wells Indicator Diagram Convolutional neural network alexnet Backpropagation Algorithm ReLu Activation Function Dropout Regularization
在线阅读 下载PDF
基于迁移学习 AlexNet的关键输电线路舞动形态特征辨识技术
2
作者 刘洋 《微型电脑应用》 2025年第3期247-250,共4页
针对线路舞动形态特征识别定位误差大、舞动强度误差大和微风环境下监测位置误差大的问题,提出基于迁移学习AlexNet的关键输电线路舞动形态特征辨识技术。结合GPS定位和伪距差分法完成对关键输电线路舞动形态特征的精确辨识。经比较实... 针对线路舞动形态特征识别定位误差大、舞动强度误差大和微风环境下监测位置误差大的问题,提出基于迁移学习AlexNet的关键输电线路舞动形态特征辨识技术。结合GPS定位和伪距差分法完成对关键输电线路舞动形态特征的精确辨识。经比较实验验证,所提方法振动曲线与实际振动位置相符,振动强度曲线峰值对应的频率与实验设置的振动频率相同;得到的舞动位置最接近实际振动位置。所提方法定位误差小、定位舞动强度误差小和微风环境下监测位置误差小,有利于关键输电线路舞动形态特征的辨识。 展开更多
关键词 迁移学习 alexnet神经网络 输电线路舞动 形态特征 辨识技术
在线阅读 下载PDF
不平衡样本下基于迁移学习-AlexNet的输电线路故障辨识方法 被引量:30
3
作者 王建 吴昊 +3 位作者 张博 南东亮 欧阳金鑫 熊小伏 《电力系统自动化》 EI CSCD 北大核心 2022年第22期182-191,共10页
输电线路不同故障类型和故障原因的故障样本集具有类不平衡性,为基于图像深度学习的故障分类辨识带来挑战。文中提出类不平衡样本下基于迁移学习-AlexNet神经网络的输电线路故障辨识方法。首先,统计分析了输电线路故障的特征与概率分布... 输电线路不同故障类型和故障原因的故障样本集具有类不平衡性,为基于图像深度学习的故障分类辨识带来挑战。文中提出类不平衡样本下基于迁移学习-AlexNet神经网络的输电线路故障辨识方法。首先,统计分析了输电线路故障的特征与概率分布,使用MATLAB/Simulink仿真产生了符合实际情况的不平衡故障样本集。然后,以故障暂态波形图像为输入集,采用迁移学习-AlexNet神经网络构建故障分类器,降低了故障特征提取的复杂性。算例测试结果表明,现有按类平衡故障样本集开展故障辨识的方法,分类准确率偏于乐观,即使采用抽样法也无法准确识别类不平衡样本中的小样本故障类型;而所提方法可以很好地应对类不平衡故障样本集,相比于经典的卷积神经网络,对故障类型与故障原因的辨识准确率也更高,训练模型用于类似线路的真实故障录波数据也能很好地辨识出故障类型。 展开更多
关键词 输电线路 故障辨识 迁移学习 alexnet神经网络 图像学习 不平衡样本
在线阅读 下载PDF
基于迁移学习和AlexNet的驾驶员行为状态识别方法 被引量:17
4
作者 戎辉 华一丁 +4 位作者 张小俊 龚进峰 唐风敏 郭蓬 何佳 《科学技术与工程》 北大核心 2019年第28期208-216,共9页
为了解决传统基于神经网络算法的驾驶员行为状态识别系统精度过于依赖大量训练样本的问题,提出将迁移学习理论和Alex Net引入到驾驶员行为状态的识别研究中。首先对驾驶员行为特征及状态进行深入分析,对驾驶员7种驾驶状态进行了定义,构... 为了解决传统基于神经网络算法的驾驶员行为状态识别系统精度过于依赖大量训练样本的问题,提出将迁移学习理论和Alex Net引入到驾驶员行为状态的识别研究中。首先对驾驶员行为特征及状态进行深入分析,对驾驶员7种驾驶状态进行了定义,构建了驾驶员状态信息采集系统;然后对基于卷积神经网络的驾驶员状态识别方法研究,建立了驾驶员状态数据集,构建了基于Alex Net卷积神经网络的状态监测系统,通过迁移学习完成了卷积神经网络识别模型。最后通过实验验证了提出的驾驶员状态识别算法对7种驾驶员状态识别的有效性。实验表明:该系统准确率达到97. 8%,且在实验设备中运行速度达到70帧/min,满足较高的准确率要求与实时性要求。 展开更多
关键词 驾驶员状态 迁移学习 alexnet 卷积神经网络
在线阅读 下载PDF
基于AlexNet卷积神经网络的大米产地高光谱快速判别 被引量:18
5
作者 吴静珠 李晓琪 +3 位作者 林珑 刘翠玲 刘志 袁玉伟 《中国食品学报》 EI CAS CSCD 北大核心 2022年第1期282-288,共7页
采集我国东北和非东北10个产地、4个品种共计1000份单粒大米样本在波长950~1700 nm区间的高光谱图像,按照单粒大米轮廓提取感兴趣区域并计算平均光谱,采用主成分分析从样本集光谱矩阵提取累计贡献率大于99%的第一、二主成分,根据载荷矩... 采集我国东北和非东北10个产地、4个品种共计1000份单粒大米样本在波长950~1700 nm区间的高光谱图像,按照单粒大米轮廓提取感兴趣区域并计算平均光谱,采用主成分分析从样本集光谱矩阵提取累计贡献率大于99%的第一、二主成分,根据载荷矩阵系数最大值筛选与第一、二主成分相关性最强的特征波长1396.67 nm和1467.38 nm。针对两组特征波长图像进行主成分分析,分别选取前三维主成分,共计可得2×3组训练样本集。结果表明:基于AlexNet卷积神经网络训练建立6组东北/非东北大米产地高光谱快速判别模型,均有较高的识别准确率,其中基于1467.38 nm波长的第三主成分图像建立的东北/非东北大米产地判别模型的性能最佳,其识别准确率可达99.5%。 展开更多
关键词 高光谱 大米产地鉴别 主成分分析 alexnet卷积神经网络
在线阅读 下载PDF
基于AlexNet卷积神经网络的激光雷达飞机尾涡识别研究 被引量:17
6
作者 潘卫军 段英捷 +2 位作者 张强 吴郑源 刘皓晨 《光电工程》 CAS CSCD 北大核心 2019年第7期123-130,共8页
为解决飞机尾涡威胁后机飞行安全问题,保障空中交通安全,提高机场和空域容量,提出了一种基于AlexNet卷积神经网络模型的算法,实现飞机尾涡的准确识别。结合多普勒激光雷达探测原理和Hallck-Burnham尾涡速度经典模型,构建了AlexNet神经... 为解决飞机尾涡威胁后机飞行安全问题,保障空中交通安全,提高机场和空域容量,提出了一种基于AlexNet卷积神经网络模型的算法,实现飞机尾涡的准确识别。结合多普勒激光雷达探测原理和Hallck-Burnham尾涡速度经典模型,构建了AlexNet神经网络模型提取大气风场中的尾涡速度云图的图像特征,识别飞机尾涡。研究表明,该模型能够准确识别目标空域中的飞机尾涡,网络模型收敛后对尾涡识别的准确率高达91.30%,并具有低虚警率,能有效地实现对飞机尾涡的识别和预警,达到尾涡监测的目的。 展开更多
关键词 尾涡识别 alexnet卷积神经网络 目标识别 多普勒激光雷达
在线阅读 下载PDF
改进的Alexnet模型及在油井示功图分类中的应用 被引量:16
7
作者 段友祥 李钰 +1 位作者 孙歧峰 徐冬胜 《计算机应用与软件》 北大核心 2018年第7期226-230,272,共6页
现在有杆抽油机采油设备仍在原油开采中占据主导地位,示功图采集及分析是检测、预防、解决采油生产过程中各种故障的有效措施和手段。借助人工智能方法进行油井抽油机示功图自动分类识别和故障判断一直是研究的重点。深度学习为示功图... 现在有杆抽油机采油设备仍在原油开采中占据主导地位,示功图采集及分析是检测、预防、解决采油生产过程中各种故障的有效措施和手段。借助人工智能方法进行油井抽油机示功图自动分类识别和故障判断一直是研究的重点。深度学习为示功图识别和解释研究注入了新的活力。主要对卷积神经网络在油井抽油机示功图自动识别中的应用进行研究,提出一种改进的Alexnet模型,实现了示功图的自动识别,并与目前常用的神经网络模型进行了比较。实验表明,改进的Alexnet模型在保证识别准确率高的同时有效降低了训练学习时间,很好地达到了实际应用要求。 展开更多
关键词 示功图 深度学习 卷积神经网络 alexnet
在线阅读 下载PDF
基于改进AlexNet卷积神经网络人脸识别的研究 被引量:8
8
作者 蔡靖 谷承睿 +1 位作者 刘光达 孙慧慧 《电子技术应用》 2024年第11期42-46,共5页
近期,人脸识别技术在社会上广受关注,其非接触式的识别特性相较于指纹等传统接触式识别方法展现出明显优势。在深度学习领域,由于传统卷积神经网络在人脸识别任务上的准确性和速度尚有提升空间,因此提出采用改进的AlexNet卷积神经网络... 近期,人脸识别技术在社会上广受关注,其非接触式的识别特性相较于指纹等传统接触式识别方法展现出明显优势。在深度学习领域,由于传统卷积神经网络在人脸识别任务上的准确性和速度尚有提升空间,因此提出采用改进的AlexNet卷积神经网络进行人脸识别。通过实验验证,与传统卷积网络相比,改进后的AlexNet在人脸识别上不仅准确度更高,而且识别过程更为稳定。 展开更多
关键词 深度学习 卷积神经网络 人脸识别 alexnet
在线阅读 下载PDF
Alexnet卷积神经网络辨识幽门螺杆菌阳性舌象的可行性研究 被引量:3
9
作者 宋晓宾 李奕 +3 位作者 李冬 任健 李修阳 马柯 《山东中医杂志》 2021年第3期235-238,共4页
目的:探索从舌象图像分析判断幽门螺杆菌(Hp)感染的可行诊断技术。方法:引入Alexnet卷积神经网络概念,通过现代技术对舌象图像分类、识别、计算,以实现对Hp舌象精准客观诊断的功能。结果:通过研究中医舌诊与消化系统的关联、舌象图像可... 目的:探索从舌象图像分析判断幽门螺杆菌(Hp)感染的可行诊断技术。方法:引入Alexnet卷积神经网络概念,通过现代技术对舌象图像分类、识别、计算,以实现对Hp舌象精准客观诊断的功能。结果:通过研究中医舌诊与消化系统的关联、舌象图像可特定性识别的原因以及深度学习Alexnet卷积神经网络结构,论证了该方法对Hp阳性舌象分类模型辨识具有可行性。结论:运用Alexnet卷积神经网络实现辨识Hp感染,将有助于补充与完善中医舌象现代诊断,是实现中医诊疗标准化与客观化的重要技术手段之一。 展开更多
关键词 alexnet卷积神经网络 幽门螺杆菌 舌象 诊断标准化 诊断客观化 可行性研究
暂未订购
基于改进ALEXNET卷积神经网络的电容层析成像三维图像重建 被引量:5
10
作者 李岩 王璐 李佳琪 《哈尔滨理工大学学报》 CAS 北大核心 2020年第4期109-115,共7页
针对卷积神经网络三维图像重建算法的样本训练速度慢和成像精度低的问题,提出一种根据不同流型的AlexNet神经网络数据训练方法。首先通过SVM算法将输入的电容样本数据按照流型分类,然后采用单一流型样本数据训练相应的AlexNet卷积神经网... 针对卷积神经网络三维图像重建算法的样本训练速度慢和成像精度低的问题,提出一种根据不同流型的AlexNet神经网络数据训练方法。首先通过SVM算法将输入的电容样本数据按照流型分类,然后采用单一流型样本数据训练相应的AlexNet卷积神经网络,使得某一流型的神经网络的输入样本数据类型简单、样本数量少和神经网络规模小。同时采用具有冲量和自适应学习速率的Adam算法,减少了训练时的误差振荡,加速神经网络的收敛。通过对比改进的AlexNet卷积神经网络算法和LBP算法的成像结果,表明优化后的AlexNet在成像精度和速度上有显著提升。 展开更多
关键词 电容层析成像 三维图像重建 alexnet卷积神经网络 Adam梯度下降算法
在线阅读 下载PDF
基于迁移学习与改进型AlexNet的蝴蝶分类算法 被引量:3
11
作者 杨大为 蔡宇 《信息与控制》 CSCD 北大核心 2023年第4期514-524,共11页
蝴蝶分类是保护蝴蝶物种多样性、观测大气变化的首要工作。为了提高蝴蝶种类识别的准确率,改善复杂网络算法运行时间长的缺陷,提出了一种基于迁移学习与改进型AlexNet的蝴蝶分类算法。该算法将AlexNet作为预训练模型,使其成为新模型的... 蝴蝶分类是保护蝴蝶物种多样性、观测大气变化的首要工作。为了提高蝴蝶种类识别的准确率,改善复杂网络算法运行时间长的缺陷,提出了一种基于迁移学习与改进型AlexNet的蝴蝶分类算法。该算法将AlexNet作为预训练模型,使其成为新模型的特征提取器,并在AlexNet算法的基础上,通过调整卷积核数量、替换归一化LRN(local response normalization)层、减少全连接层个数、增加均值下采样层等,进行改进与优化。实验结果表明,改进算法对蝴蝶种类识别的准确率高于原AlexNet算法,并具有更优的识别效率,提升了整体模型的性能。 展开更多
关键词 蝴蝶种类 神经网络 卷积 图像分类 alexnet
原文传递
融合迁移学习的AlexNet神经网络不锈钢焊缝缺陷分类 被引量:9
12
作者 陈立潮 闫耀东 +2 位作者 张睿 傅留虎 曹建芳 《智能系统学报》 CSCD 北大核心 2021年第3期537-543,共7页
针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对... 针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对输入数据量的要求;对后2层卷积层提取的特征信息批量归一化(batch normalization,BN),以加快网络的收敛速度;并使用带泄露线性整流(leaky rectified linear unit,LeakyReLU)函数对抑制神经元进行激活,从而提高模型的鲁棒性和特征提取能力。结果表明,该模型最终达到了95.12%的准确率,相比原结构识别精度提高了9.8%。验证了改进后方法能够对裂纹、气孔、夹渣、未熔合和未焊透5类不锈钢焊缝缺陷实现高精度分类。相比现有方法,其识别面更广,精度更高,具有一定的工程实践意义。 展开更多
关键词 不锈钢焊缝缺陷分类 卷积神经网络 图像预处理 alexnet模型 迁移学习 数据增强 焊缝数据集 深度学习
在线阅读 下载PDF
基于增强AlexNet的音乐流派识别研究 被引量:4
13
作者 刘万军 孟仁杰 +1 位作者 曲海成 刘腊梅 《智能系统学报》 CSCD 北大核心 2020年第4期750-757,共8页
针对机器学习模型对音乐流派特征识别能力较弱的问题,提出了一种基于深度卷积神经网络的音乐流派识别(DCNN-MGR)模型。该模型首先通过快速傅里叶变换提取音频信息,生成可以输入DCNN的频谱并切割生成频谱切片。然后通过融合带泄露整流(Le... 针对机器学习模型对音乐流派特征识别能力较弱的问题,提出了一种基于深度卷积神经网络的音乐流派识别(DCNN-MGR)模型。该模型首先通过快速傅里叶变换提取音频信息,生成可以输入DCNN的频谱并切割生成频谱切片。然后通过融合带泄露整流(Leaky ReLU)函数、双曲正切(Tanh)函数和Softplus分类器对AlexNet进行增强。其次将生成的频谱切片输入增强的AlexNet进行多批次的训练与验证,提取并学习音乐特征,得到可以有效分辨音乐特征的网络模型。最后使用输出模型进行音乐流派识别测试。实验结果表明,增强的AlexNet在音乐特征识别准确率和网络收敛效果上明显优于AlexNet及其他常用的DCNN、DCNN-MGR模型在音乐流派识别准确率上比其他机器学习模型提升了4%~20%。 展开更多
关键词 音乐流派识别 深度卷积神经网络 机器学习 深度学习 alexnet 音频特征提取 音乐特征识别
在线阅读 下载PDF
基于AlexNet的农作物病虫害识别研究 被引量:4
14
作者 张娜 刘坤 杨国栋 《计算机与数字工程》 2024年第2期554-558,621,共6页
农作物病虫害症状的检测和鉴定是保证农作物良好生长的前提条件,是人们能够准确、及时地制定防治方案和采取相关措施,切实减轻病虫害的发生。于是提出了以Alexnet为基础的农作物病虫识别方法,首先对采集到的病虫和健康叶片图像进行归档... 农作物病虫害症状的检测和鉴定是保证农作物良好生长的前提条件,是人们能够准确、及时地制定防治方案和采取相关措施,切实减轻病虫害的发生。于是提出了以Alexnet为基础的农作物病虫识别方法,首先对采集到的病虫和健康叶片图像进行归档分类,然后对建立好的数据集进行尺寸归一化和数据强化等预处理,最后对训练集采用Alexnet模型进行训练,经过5次训练,实验证明其准确率可达96.93%,该方法能较好地识别农作物病虫害,具有较好的鲁棒性和较高的精确度。 展开更多
关键词 病虫害识别 alexnet 图像识别 卷积神经网络
在线阅读 下载PDF
基于AlexNet网络的服装风格识别分析
15
作者 李淑霞 杨俊成 《微型电脑应用》 2022年第1期48-50,54,共4页
将深度学习引入机器学习使人工智能的研究上了一个新的台阶,深度学习的建模与表征能力强大,在图像处理领域有着非常重要的作用,这为服装风格分类提供了发展机会。为了进一步得到服装图片的风格信息,对原始训练集进行图片增广,扩增数据集... 将深度学习引入机器学习使人工智能的研究上了一个新的台阶,深度学习的建模与表征能力强大,在图像处理领域有着非常重要的作用,这为服装风格分类提供了发展机会。为了进一步得到服装图片的风格信息,对原始训练集进行图片增广,扩增数据集,同时通过训练AlexNet卷积神经网络模型,对扩充数据集进行服装风格分类,从而提高服装风格识别精度。 展开更多
关键词 深度学习 机器学习 alexnet卷积神经网络 服装风格 服装图片
在线阅读 下载PDF
基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法 被引量:8
16
作者 赵志坚 茆志伟 +1 位作者 张进杰 江志农 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期64-70,共7页
针对柴油机缸盖振动信号非线性、非平稳的特点,以及传统故障诊断方法需要先验知识且特征提取费时费力的缺点,提出了一种基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法。首先通过复Morlet小波将柴油机缸盖振... 针对柴油机缸盖振动信号非线性、非平稳的特点,以及传统故障诊断方法需要先验知识且特征提取费时费力的缺点,提出了一种基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法。首先通过复Morlet小波将柴油机缸盖振动信号转换为时频图,该变换包含了信号的时频域信息,比单一的时域或频域信号更适合分析柴油机缸盖振动这种非平稳信号;其次将时频图输入至AlexNet神经网络进行特征自动提取并建立故障诊断模型,解决了传统手工提取特征费时费力且需要专家经验的问题;然后通过Batch Normalization和Dropout技术改进网络结构,并优化神经网络超参数以提高模型的准确度和计算效率;最后将本文方法与传统的故障诊断方法应用于柴油机气门间隙异常故障诊断并进行对比,发现其诊断准确率最高,验证了所提方法的优越性。 展开更多
关键词 柴油机 故障诊断 复Morlet变换 alexnet神经网络
在线阅读 下载PDF
AlexNet改进及优化方法的研究 被引量:31
17
作者 郭敏钢 宫鹤 《计算机工程与应用》 CSCD 北大核心 2020年第20期124-131,共8页
通过对Normalization、优化器、激活函数三方面对AlexNet卷积神经网络进行了改进及优化。针对LRN(Local Response Normalization)不存在可学习参数,提出了用WN(Weight Normalization)来代替LRN,同时将WN置于所有池化层(Pooling layer)之... 通过对Normalization、优化器、激活函数三方面对AlexNet卷积神经网络进行了改进及优化。针对LRN(Local Response Normalization)不存在可学习参数,提出了用WN(Weight Normalization)来代替LRN,同时将WN置于所有池化层(Pooling layer)之后,提高了AlexNet模型训练的准确率;通过对比分析Adam、RMSProp、Momentum三种优化器在不同学习率(Learning rate)下对AlexNet模型训练的影响,并得出了相应的学习率的优化区间,提高了AlexNet在Optimizer的学习率区间选择上的准确性;针对AlexNet中ReLU激活函数存在的部分权重无法更新以及梯度爆炸问题,提出了ReLU6与Swish的融合分段函数算法,提升了AlexNet模型训练收敛速度以及准确率的同时也缓解了过拟合现象的发生。 展开更多
关键词 alexnet 卷积神经网络(CNN) NORMALIZATION 优化器 激活函数
在线阅读 下载PDF
基于改进型AlexNet的花生荚果品种识别 被引量:8
18
作者 倪建功 杨昊岩 +1 位作者 李娟 韩仲志 《花生学报》 北大核心 2021年第4期14-22,共9页
花生是我国重要的油料作物,不同品种的花生含油率是不同的,因此需要对不同品种的花生进行分选。传统模式识别的方法需要人工定义各类特征,存在主观判断、浪费人力等问题,实用性较差。针对上述问题,本实验基于卷积神经网络提出一种多品... 花生是我国重要的油料作物,不同品种的花生含油率是不同的,因此需要对不同品种的花生进行分选。传统模式识别的方法需要人工定义各类特征,存在主观判断、浪费人力等问题,实用性较差。针对上述问题,本实验基于卷积神经网络提出一种多品类花生荚果识别模型。该模型基于经典的AlexNet网络模型,通过设置不同尺寸的卷积核提取更丰富的特征,去除局部响应归一化层,修改全连接层神经元连接个数等操作,设计了一种改进型AlexNet,基于改进型AlexNet对13种不同类型的花生荚果进行识别分类。原始AlexNet对13类花生荚果识别的最高准确率为84.27%,平均准确率为83.66%。改进型AlexNet最高准确率为88.76%,平均准确率为87.73%,分别提高了4.49和4.07个百分点。研究结果表明,改进型AlexNet对不同品种花生荚果的识别结果优于原始AlexNet。利用卷积神经网络对花生荚果品种识别具有一定可行性,基本可以推广到实际生产中使用。 展开更多
关键词 花生荚果 品种分类 图像处理 卷积神经网络 alexnet
在线阅读 下载PDF
基于改进AlexNet卷积神经网络的手写体数字识别 被引量:15
19
作者 谢东阳 李丽宏 苗长胜 《河北工程大学学报(自然科学版)》 CAS 2021年第4期102-106,共5页
为了提高手写体数字的识别率,在AlexNet网络模型的基础上进行改进,引入Inception-resnet模块替换模型中的Conv3和Conv4来提升模型的特征提取能力;使用批归一化处理(BN)方法加快网络的收敛速度,防止过拟合;减少卷积核的数量,提升网络的... 为了提高手写体数字的识别率,在AlexNet网络模型的基础上进行改进,引入Inception-resnet模块替换模型中的Conv3和Conv4来提升模型的特征提取能力;使用批归一化处理(BN)方法加快网络的收敛速度,防止过拟合;减少卷积核的数量,提升网络的训练速度。在MNIST数据集上进行训练与测试,实验结果表明改进的网络模型具有较高的检测精度,达到了0.9966,证明了本算法的有效性。 展开更多
关键词 手写数字识别 alexnet卷积神经网络 Inception-resnet模块 批归一化处理
在线阅读 下载PDF
基于AlexNet网络的MPSK与MQAM类信号的调制识别 被引量:8
20
作者 裴禹豪 曲毅 +1 位作者 李锦明 扆泽江 《激光杂志》 北大核心 2018年第10期75-78,共4页
针对现有的信号调制类型识别算法对信号的先验知识要求比较高,人工选取特征复杂、鲁棒性差等问题,引入卷积神经网络算法,将Alex Net网络运用到对同步前的MPSK和MQAM类信号的调制类型识别上。选取2PSK、4PSK、16QAM、32QAM四种信号的散... 针对现有的信号调制类型识别算法对信号的先验知识要求比较高,人工选取特征复杂、鲁棒性差等问题,引入卷积神经网络算法,将Alex Net网络运用到对同步前的MPSK和MQAM类信号的调制类型识别上。选取2PSK、4PSK、16QAM、32QAM四种信号的散布图特征进行识别。研究结果表明卷积神经网络算法能较好地对未同步的MPSK和MQAM类信号进行调制类型识别,且MPSK类信号的识别率要高于MQAM类信号的识别率。 展开更多
关键词 调制识别 卷积神经网络 alexnet 散布图
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部