Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region...Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.展开更多
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t...Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi...The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.展开更多
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da...Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality.展开更多
The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the ...The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the continuously advancing level of sophistication.To resolve this problem,efficient and flexible malware detection tools are needed.This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations.Moreover,the dataset used in this study is the CIC-AndMal2017,which contains 20,000 instances of network traffic across five distinct malware categories:a.Trojan,b.Adware,c.Ransomware,d.Spyware,e.Worm.These network traffic features are then converted to image formats for deep learning,which is applied in a CNN framework,including the VGG16 pre-trained model.In addition,our approach yielded high performance,yielding an accuracy of 0.92,accuracy of 99.1%,precision of 98.2%,recall of 99.5%,and F1 score of 98.7%.Subsequent improvements to the classification model through changes within the VGG19 framework improved the classification rate to 99.25%.Through the results obtained,it is clear that CNNs are a very effective way to classify Android malware,providing greater accuracy than conventional techniques.The success of this approach also shows the applicability of deep learning in mobile security along with the direction for the future advancement of the real-time detection system and other deeper learning techniques to counter the increasing number of threats emerging in the future.展开更多
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro...Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications.展开更多
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ...To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.展开更多
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On...System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework.展开更多
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical...As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recogniti...How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recognition accuracy,a network protocol recognition method based on Convolutional Neural Network(CNN)is proposed.The method utilizes deep learning technique,and it processes network flows automatically.Firstly,normalization is performed on the intercepted network flows and they are mapped into two-dimensional matrix which will be used as the input of CNN.Then,an improved classification model named Ptr CNN is built,which can automatically extract the appropriate features of network protocols.Finally,the classification model is trained to recognize the network protocols.The proposed approach is compared with several machine learning methods.Experimental results show that the tailored CNN can not only improve protocol recognition accuracy but also ensure the fast convergence of classification model and reduce the classification time.展开更多
Surface monitoring, vertical atmospheric column observation, and simulation using chemical transportation models are three dominant approaches for perception of fine particles with diameters less than 2.5 micrometers(...Surface monitoring, vertical atmospheric column observation, and simulation using chemical transportation models are three dominant approaches for perception of fine particles with diameters less than 2.5 micrometers(PM2.5) concentration. Here we explored an imagebased methodology with a deep learning approach and machine learning approach to extend the ability on PM2.5 perception. Using 6976 images combined with daily weather conditions and hourly time data in Shanghai(2016), trained by hourly surface monitoring concentrations, an end-to-end model consisting of convolutional neural network and gradient boosting machine(GBM) was constructed. The mean absolute error, the root-mean-square error and the R-squared for PM2.5 concentration estimation using our proposed method is 3.56, 10.02, and 0.85 respectively. The transferability analysis showed that networks trained in Shanghai, fine-tuned with only 10% of images in other locations, achieved performances similar to ones from trained on data from target locations themselves. The sensitivity of different regions in the image to PM2.5 concentration was also quantified through the analysis of feature importance in GBM. All the required inputs in this study are commonly available, which greatly improved the accessibility of PM2.5 concentration for placed and period with no surface observation. And this study makes an exploratory attempt on pollution monitoring using graph theory and deep learning approach.展开更多
Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and...Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.展开更多
A novel structure based on channel-wise attention mechanism is presented in this paper.With the proposed structure embedded,an efficient classification model that accepts multi-lead electrocardiogram(ECG)as input is c...A novel structure based on channel-wise attention mechanism is presented in this paper.With the proposed structure embedded,an efficient classification model that accepts multi-lead electrocardiogram(ECG)as input is constructed.One-dimensional convolutional neural networks(CNNs)have proven to be effective in pervasive classification tasks,enabling the automatic extraction of features while classifying targets.We implement the residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map during the training process.An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task on the two out of five ECG classes.The data in the MIT-BIH arrhythmia database is used and a series of control experiments is conducted.Utilizing both leads of the ECG signals as input to the neural network classifier can achieve better classification results than those from using single channel inputs in different application scenarios.Models embedded with the channel-wise attention structure always achieve better scores on sensitivity and precision than the plain Resnet models.The proposed model exceeds most of the state-of-the-art models in ventricular ectopic beats(VEB)classification performance and achieves competitive scores for supraventricular ectopic beats(SVEB).Adopting more lead ECG signals as input can increase the dimensions of the input feature maps,helping to improve both the performance and generalization of the network model.Due to its end-to-end characteristics,and the extensible intrinsic for multi-lead heart diseases diagnosing,the proposed model can be used for the realtime ECG tracking of ECG waveforms for Holter or wearable devices.展开更多
The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly...The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory.展开更多
Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in...Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in order to achieve high results by using minimal computational resources to train the architecture.Our proposed framework to automated design is aimed at resolving this problem.The proposed framework is focused on a genetic algorithm that develops a population of CNN models in order to find the architecture that is the best fit.In comparison to the co-authored work,our proposed framework is concerned with creating lightweight architectures with a limited number of parameters while retaining a high degree of validity accuracy utilizing an ensemble learning technique.This architecture is intended to operate on low-resource machines,rendering it ideal for implementation in a number of environments.Four common benchmark image datasets are used to test the proposed framework,and it is compared to peer competitors’work utilizing a range of parameters,including accuracy,the number of model parameters used,the number of GPUs used,and the number of GPU days needed to complete the method.Our experimental findings demonstrated a significant advantage in terms of GPU days,accuracy,and the number of parameters in the discovered model.展开更多
Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requiremen...Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requirements in terms of recognition accuracy.Therefore,ShuffleNetV2 was improved by combining the current hot concern mechanism,convolution kernel size adjustment,convolution tailoring,and CSP technology to improve the accuracy and reduce the amount of computation in this study.Six convolutional neural network models with sufficient trainable parameters were designed for differentiation learning.The SGD algorithm is used to optimize the training process to avoid overfitting or falling into the local optimum.In this paper,a conventional plant image dataset TJAU10 collected by cell phones in a natural context was constructed,containing 3000 images of 10 plant species on the campus of Tianjin Agricultural University.Finally,the improved model is compared with the baseline version of the model,which achieves better results in terms of improving accuracy and reducing the computational effort.The recognition accuracy tested on the TJAU10 dataset reaches up to 98.3%,and the recognition precision reaches up to 93.6%,which is 5.1%better than the original model and reduces the computational effort by about 31%compared with the original model.In addition,the experimental results were evaluated using metrics such as the confusion matrix,which can meet the requirements of professionals for the accurate identification of plant species.展开更多
基金funding support from the National Natural Science Foundation of China(Grant Nos.U22A20594,52079045)Hong-Zhi Cui acknowledges the financial support of the China Scholarship Council(Grant No.CSC:202206710014)for his research at Universitat Politecnica de Catalunya,Barcelona.
文摘Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.
基金Supported by Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2022JM-396)the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23040101+4 种基金Shaanxi Province Key Research and Development Projects(Program No.2023-YBSF-437)Xi'an Shiyou University Graduate Student Innovation Fund Program(Program No.YCX2412041)State Key Laboratory of Air Traffic Management System and Technology(SKLATM202001)Tianjin Education Commission Research Program Project(2020KJ028)Fundamental Research Funds for the Central Universities(3122019132)。
文摘Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金Saudi Arabia for funding this work through Small Research Group Project under Grant Number RGP.1/316/45.
文摘The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.
文摘Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Funding Program,Grant No.(FRP-1443-15).
文摘The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the continuously advancing level of sophistication.To resolve this problem,efficient and flexible malware detection tools are needed.This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations.Moreover,the dataset used in this study is the CIC-AndMal2017,which contains 20,000 instances of network traffic across five distinct malware categories:a.Trojan,b.Adware,c.Ransomware,d.Spyware,e.Worm.These network traffic features are then converted to image formats for deep learning,which is applied in a CNN framework,including the VGG16 pre-trained model.In addition,our approach yielded high performance,yielding an accuracy of 0.92,accuracy of 99.1%,precision of 98.2%,recall of 99.5%,and F1 score of 98.7%.Subsequent improvements to the classification model through changes within the VGG19 framework improved the classification rate to 99.25%.Through the results obtained,it is clear that CNNs are a very effective way to classify Android malware,providing greater accuracy than conventional techniques.The success of this approach also shows the applicability of deep learning in mobile security along with the direction for the future advancement of the real-time detection system and other deeper learning techniques to counter the increasing number of threats emerging in the future.
文摘Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications.
基金supported by the National Key R&D Program of China (Grant No.2022YFC3003401)the National Natural Science Foundation of China (Grant Nos.42041006 and 42377137).
文摘To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework.
基金Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
基金supported by the National Key R&D Program of China(2017YFB0802900).
文摘How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recognition accuracy,a network protocol recognition method based on Convolutional Neural Network(CNN)is proposed.The method utilizes deep learning technique,and it processes network flows automatically.Firstly,normalization is performed on the intercepted network flows and they are mapped into two-dimensional matrix which will be used as the input of CNN.Then,an improved classification model named Ptr CNN is built,which can automatically extract the appropriate features of network protocols.Finally,the classification model is trained to recognize the network protocols.The proposed approach is compared with several machine learning methods.Experimental results show that the tailored CNN can not only improve protocol recognition accuracy but also ensure the fast convergence of classification model and reduce the classification time.
基金supported by the National Natural Science Foundation of China (Nos. 41822505 , 42061130213 )the Royal Society-Newton Advanced Fellowship (No. NAF\R1\201166)+1 种基金Beijing Nova Program (No. Z181100006218077)the TsinghuaUniversity Initiative Scientific Research Program。
文摘Surface monitoring, vertical atmospheric column observation, and simulation using chemical transportation models are three dominant approaches for perception of fine particles with diameters less than 2.5 micrometers(PM2.5) concentration. Here we explored an imagebased methodology with a deep learning approach and machine learning approach to extend the ability on PM2.5 perception. Using 6976 images combined with daily weather conditions and hourly time data in Shanghai(2016), trained by hourly surface monitoring concentrations, an end-to-end model consisting of convolutional neural network and gradient boosting machine(GBM) was constructed. The mean absolute error, the root-mean-square error and the R-squared for PM2.5 concentration estimation using our proposed method is 3.56, 10.02, and 0.85 respectively. The transferability analysis showed that networks trained in Shanghai, fine-tuned with only 10% of images in other locations, achieved performances similar to ones from trained on data from target locations themselves. The sensitivity of different regions in the image to PM2.5 concentration was also quantified through the analysis of feature importance in GBM. All the required inputs in this study are commonly available, which greatly improved the accessibility of PM2.5 concentration for placed and period with no surface observation. And this study makes an exploratory attempt on pollution monitoring using graph theory and deep learning approach.
基金This paper is supported by the following funds:National Key R&D Program of China(2018YFF01010100)National natural science foundation of China(61672064)+1 种基金Basic Research Program of Qinghai Province under Grants No.2020-ZJ-709Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.
基金the Key Research and Development Project of Zhejiang Province,China(No.2017C03029)。
文摘A novel structure based on channel-wise attention mechanism is presented in this paper.With the proposed structure embedded,an efficient classification model that accepts multi-lead electrocardiogram(ECG)as input is constructed.One-dimensional convolutional neural networks(CNNs)have proven to be effective in pervasive classification tasks,enabling the automatic extraction of features while classifying targets.We implement the residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map during the training process.An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task on the two out of five ECG classes.The data in the MIT-BIH arrhythmia database is used and a series of control experiments is conducted.Utilizing both leads of the ECG signals as input to the neural network classifier can achieve better classification results than those from using single channel inputs in different application scenarios.Models embedded with the channel-wise attention structure always achieve better scores on sensitivity and precision than the plain Resnet models.The proposed model exceeds most of the state-of-the-art models in ventricular ectopic beats(VEB)classification performance and achieves competitive scores for supraventricular ectopic beats(SVEB).Adopting more lead ECG signals as input can increase the dimensions of the input feature maps,helping to improve both the performance and generalization of the network model.Due to its end-to-end characteristics,and the extensible intrinsic for multi-lead heart diseases diagnosing,the proposed model can be used for the realtime ECG tracking of ECG waveforms for Holter or wearable devices.
基金National Key Research and Development Project,China(No.2018YFB1308800)。
文摘The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory.
文摘Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in order to achieve high results by using minimal computational resources to train the architecture.Our proposed framework to automated design is aimed at resolving this problem.The proposed framework is focused on a genetic algorithm that develops a population of CNN models in order to find the architecture that is the best fit.In comparison to the co-authored work,our proposed framework is concerned with creating lightweight architectures with a limited number of parameters while retaining a high degree of validity accuracy utilizing an ensemble learning technique.This architecture is intended to operate on low-resource machines,rendering it ideal for implementation in a number of environments.Four common benchmark image datasets are used to test the proposed framework,and it is compared to peer competitors’work utilizing a range of parameters,including accuracy,the number of model parameters used,the number of GPUs used,and the number of GPU days needed to complete the method.Our experimental findings demonstrated a significant advantage in terms of GPU days,accuracy,and the number of parameters in the discovered model.
基金supported by the Key Project Supported by Science and Technology of Tianjin Key Research and Development Plan[Grant No.20YFZCSN00220]Tianjin Science and Technology Plan Project[Grant No.21YFSNSN00040]+1 种基金Central Government Guides Local Science and Technology Development Project[Grant No.21ZYCGSN00590]Inner Mongolia Autonomous Region Department of Science and Technology Project[Grant No.2020GG0068].
文摘Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requirements in terms of recognition accuracy.Therefore,ShuffleNetV2 was improved by combining the current hot concern mechanism,convolution kernel size adjustment,convolution tailoring,and CSP technology to improve the accuracy and reduce the amount of computation in this study.Six convolutional neural network models with sufficient trainable parameters were designed for differentiation learning.The SGD algorithm is used to optimize the training process to avoid overfitting or falling into the local optimum.In this paper,a conventional plant image dataset TJAU10 collected by cell phones in a natural context was constructed,containing 3000 images of 10 plant species on the campus of Tianjin Agricultural University.Finally,the improved model is compared with the baseline version of the model,which achieves better results in terms of improving accuracy and reducing the computational effort.The recognition accuracy tested on the TJAU10 dataset reaches up to 98.3%,and the recognition precision reaches up to 93.6%,which is 5.1%better than the original model and reduces the computational effort by about 31%compared with the original model.In addition,the experimental results were evaluated using metrics such as the confusion matrix,which can meet the requirements of professionals for the accurate identification of plant species.