Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in s...Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.展开更多
A novel tetra-europium(III)-containing antimonotungstate,Na_(8.2)[H_(2)N(CH_(3))_(2)]_(9)[Na_(10.8)(tar)_(4)(H_(2)O)_(20)(Eu_(2)Sb_(2)W_(21)O_(72))_(2)]·44.5H_(2)O(EuSbW,H_(4)tar=dl-tartaric acid),has been synthe...A novel tetra-europium(III)-containing antimonotungstate,Na_(8.2)[H_(2)N(CH_(3))_(2)]_(9)[Na_(10.8)(tar)_(4)(H_(2)O)_(20)(Eu_(2)Sb_(2)W_(21)O_(72))_(2)]·44.5H_(2)O(EuSbW,H_(4)tar=dl-tartaric acid),has been synthesized and characterized.The dimeric polyoxoanion of EuSbW consists of two Dawson-like{Eu_(2)Sb_(2)W_(21)}units bridged by four dl-tartaric acid ligands.The adjacent carboxyl and hydroxy groups in each tartaric acid simultaneously chelate with W and Eu atoms from different{Eu_(2)Sb_(2)W_(21)}units,thereby forming the dimeric structure.EuSbW represents an extremely rare polyoxometalate where four tartaric acid ligands function as connectors to bridge two{Eu_(2)Sb_(2)W_(21)}units.Additionally,EuSbW exhibits excellent catalytic activity and reusability in the oxidation of thioethers and alcohols,achieving 100%conversion and>99%selectivity for various thioethers,and 85–100%conversion with 90–99%selectivity for diverse alcohols under mild conditions.展开更多
Synthesis of primary amines from alcohols is an economical and green route to access high-value N-compounds.However,challenges remain to develop both cost-effective and efficient catalysts.In this study,we developed a...Synthesis of primary amines from alcohols is an economical and green route to access high-value N-compounds.However,challenges remain to develop both cost-effective and efficient catalysts.In this study,we developed a Ru-Co/ZrO_(2)single-atom alloy catalyst which afforded diverse primary amines from alcohols in the presence of ammonia and hydrogen with exceptional conversion(up to 90%)and selectivity(80%)under mild conditions(0.7 MPa NH_(3),0.3 MPa H_(2),160℃)and exhibited satisfactory stability upon regeneration.The turnover rate was approximately 8.4 times higher than that observed over the Co/ZrO_(2)catalyst.Characterizations indicated that the alloyed Ru facilitated the reduction of Co,strengthened the interaction with H_(2)and mitigated the over-strong adsorption of aldehyde intermediates.These combined effects contributed significantly to the enhanced catalytic performances.This work presents a promising strategy for the development of advanced catalysts in the amination of alcohols.展开更多
The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first disco...The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.展开更多
Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation a...Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation at night are still lacking.We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols,E-2-penten-1-ol,Z-2-hexen-1-ol and Z-3-hepten-1-ol,with NO_(3)radicals(NO_(3)•)during the night.The rate constants of these reactions were(11.7±1.76)×10^(−13),(8.55±1.33)×10^(−13)and(6.08±0.47)×10^(−13)cm^(3)/(molecule·s)at 298K and 760 Torr,respectively.In contrast,the reaction rate of similar substances with ozone was about 10^(−18)cm^(3)/(molecule·s),which indicates that the reaction with NO_(3)•is themain oxidation pathway for unsaturated alcohols at night.Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO_(3)•,and the total small molecule aldehydes and ketones yields can reach between 45%-60%.They mainly originate from the breakage of alkoxy radicals,and different breakage sites determine different product distributions.In addition,the SOA yields of the three unsaturated alcohols with NO_(3)•were 7.1%±1.0%,12.5%±1.9%and 30.0%±4.5%,respectively,whichweremuch higher than those of similarly structured substances with O_(3)or OH radicals(•OH).The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol(SOA)of the three unsaturated alcohols are dimeric compounds containing several nitrate groups,which are formed through the polymerization of oxyalkyl radicals.展开更多
Regulating the location of the metal promoters plays a vital role in catalyst structure and its catalytic behavior during CO_(2)hydrogenation to higher alcohols.Herein,we selected the metal promoters with a precipitat...Regulating the location of the metal promoters plays a vital role in catalyst structure and its catalytic behavior during CO_(2)hydrogenation to higher alcohols.Herein,we selected the metal promoters with a precipitation pH similar to that of Cu^(2+)or Fe^(3+)to prepare a series of CuFe-based catalysts.Characterization results show that doping Al or Cr promoter,located with the Fe phase,suppressed the excessive carburization of the Fe phase and maintained an optimal proportion between Fe_(3)O_(4) and amorphous iron carbide(FeC_(x)),thus exhibiting superior catalytic activity and stability.In contrast,doping Zn or In promoter,located with the Cu phase,underwent a deeper carburization and formed more crys-talline FeC_(x),showing an inferior performance.The CuFeCr catalyst achieved the highest space-time yield of 330 mg g_(cat)^(-1)h^(-1)for higher alcohols among these catalysts.This study provides a novel strategy for opti-mizing the structure of the active phases for CO_(2)hydrogenation.展开更多
Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to ...Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to the inevitable side reactions involving cycloaddition.Herein,the visible-light-mediated O-H functionalization reactions of alkenyl alcohols with diazo compounds were developed.This process competed favorably with the cycloaddition reaction.A series of multifunctional ethers were provided in low to high yields with aryldiazoacetates or 3-diazooxindoles.Biologically relevant spirooxindole-fused oxacycle could be easily accessed from the O-H functionalization product of alkenyl alcohol and 3-diazooxindole.展开更多
Solar-driven selective upgrading of lignocellulosic biomass-derived alcohols to value-added chemicals and clean fuel hydrogen(H_(2))shows great potential for tackling the energy crisis and environmental pollu-tion iss...Solar-driven selective upgrading of lignocellulosic biomass-derived alcohols to value-added chemicals and clean fuel hydrogen(H_(2))shows great potential for tackling the energy crisis and environmental pollu-tion issues.Here,we construct a MAPbBr_(3)/ReS_(2) heterostructure by embedding distorted tetragonal(1T)phase ReS_(2) nanoflowers into large-sized MAPbBr_(3) for green value-added utilization of biomass-derived alcohols.The embedded structure effectively enlarges the contact interface between the ReS_(2) and the MAPbBr_(3),and importantly,induces a strong built-in electric field aligned between the spatially well-defined MAPbBr_(3) and ReS_(2) nanoflowers.Moreover,the distorted 1T phase ReS_(2) with low work function well matches the energy band of MAPbBr_(3),forming a heterostructure with a downward band bending at the interface.These features empower the MAPbBr_(3)/ReS_(2) photocatalyst with high capability to promote charge separation and expedite the surface redox reaction.Consequently,optimal BAD and H_(2) production rates of about 1220 μmol h-1 g-1 are realized over a MAPbBr_(3)/ReS_(2) 2%sample,which are approximately 9 times greater than those of blank MAPbBr_(3).This work demonstrates the great potential of constructing an embedded transition metal dichalcogenide@metal halide perovskites heterostructure with downhill interfacial charge transfer for photocatalytic upgrading of biomass-derived alcohols.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
Chiral alcohols and amines are important structural units widely existing in pharmaceuticals,agrochemicals,and food additives.Dynamic kinetic resolution(DKR)is an efficient strategy to deliver optically active alcohol...Chiral alcohols and amines are important structural units widely existing in pharmaceuticals,agrochemicals,and food additives.Dynamic kinetic resolution(DKR)is an efficient strategy to deliver optically active alcohols and amines from their racemates.For the development of DKR method,racemization catalyst plays as a crucial element with the requirement of compatibility with the kinetic resolution(KR)system.In this paper,recent advance in the catalytic racemization of secondary alcohols and amines is summarized based on different types of racemizing intermediates,which are redox racemization via ketone/imine intermediates,racemization via radical intermediates,and racemization via carbocation intermediates.Enzymatic racemization of secondary alcohols and amines is also enclosed.展开更多
Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages. A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS) was establish...Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages. A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS) was established to analyze the metabolism pattern of higher alcohols in rat plasma after gavage of 4 common alcoholic beverages including huangjiu, baijiu, wine and brandy. 7 mL of dichloromethane was determined as the optimal extraction condition, and 8 higher alcohols were precisely quantified with detection limits of 1.82-11.65 μg/L, recoveries of 89.07%-110.89% and fine repeatability. The fastest absorption and elimination rates of plasma total higher alcohols were observed in baijiu and huangjiu group, respectively, and the highest peak concentration was found in brandy group. Additionally, the metabolic rate of plasma isoamyl alcohol in huangjiu group was faster than that in wine group at the same intragastric administration dosage. This study may provide potential insight for evaluation of alcoholic beverage quality.展开更多
A simple and additive-free protocol has been developed for the preparation ofβ-keto phosphorodithioates through the three-component reaction of easily available sulfoxonium ylides,P_(4)S_(10),and alcohols.The present...A simple and additive-free protocol has been developed for the preparation ofβ-keto phosphorodithioates through the three-component reaction of easily available sulfoxonium ylides,P_(4)S_(10),and alcohols.The present geminal hydro-phosphorodithiolation reaction was performed at room temperature to construct a series ofβ-keto phosphorodithioates in the absence of any metal reagents,bases,or additives.展开更多
Utilizing CO_(2)for the production of bulky and valuable chemicals presents an attractive solution to address environmental and fossil energy crises.Among the various approaches,direct carboxylation of alcohols with C...Utilizing CO_(2)for the production of bulky and valuable chemicals presents an attractive solution to address environmental and fossil energy crises.Among the various approaches,direct carboxylation of alcohols with CO_(2)stands out as an eco-friendly process capable of efficiently producing carboxylic acids in a sustainable manner.However,the high dissociation energy of the C–O bond poses a significant challenge in this process.Over the past few decades,several strategies have been developed to activate alcohols and establish efficient catalytic systems for carboxylation with CO_(2).Nevertheless,the sporadic nature of reported approaches makes it difficult to determine the most effective one.This perspective aims to provide an overview of the current state-of-the-art catalytic protocols for carboxylating alcohols with CO_(2),encompassing esterification,halogenation,and photocatalysis,while considering their respective advantages and limitations.We aim to discern the most promising avenues for future development in this field.The insights presented in this perspective will contribute to the advancement of efficient and sustainable carboxylation methods using CO_(2),leading to the production of valuable chemicals in future.展开更多
Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with n...Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission.展开更多
A mild,green,convenient and scalable N-bromosuccinimide(NBS)promoted direct phosphorylation strategy of secondary phosphine oxides and alcohols for the synthesis of various phosphinate esters was developed.A variety o...A mild,green,convenient and scalable N-bromosuccinimide(NBS)promoted direct phosphorylation strategy of secondary phosphine oxides and alcohols for the synthesis of various phosphinate esters was developed.A variety of substrates are well-tolerated and the desirable compounds were afforded in moderate to excellent yields(up to 92%).This reaction is conducted at room temperature without the addition of any oxidant and metal catalyst,which provides a new strategy for the synthesis of phosphinate esters.展开更多
The propargylation of various nucleophiles including indoles,phenol,anisole,enoxysilanes,and alcohols was rapidly achieved using catalytic copper(Ⅱ)triflate.The reaction conditions are mild,allowing for quick reactio...The propargylation of various nucleophiles including indoles,phenol,anisole,enoxysilanes,and alcohols was rapidly achieved using catalytic copper(Ⅱ)triflate.The reaction conditions are mild,allowing for quick reactions in an undried solvent and under atmospheric air.The desired products are obtained with good yields.展开更多
Simultaneously utilizing photogenerated electrons and holes to convert renewable biomass and its derivatives into corresponding value‐added products and hydrogen(H_(2))is a promising strategy to deal with the energy ...Simultaneously utilizing photogenerated electrons and holes to convert renewable biomass and its derivatives into corresponding value‐added products and hydrogen(H_(2))is a promising strategy to deal with the energy and environmental crisis.Herein,we report a facile hydrothermal method to construct a direct Z‐scheme CdS/WO_(3) binary composite for photocatalytic coupling redox reaction,simultaneously producing H_(2) and selectively converting aromatic alcohols into aromatic aldehydes in one pot.Compared with bare CdS and WO_(3),the CdS/WO_(3) binary composite exhibits significantly enhanced performance for this photocatalytic coupled redox reaction,which is ascribed to the ex‐tended light harvesting range,efficient charge carrier separation rate and optimized redox capabil‐ity of CdS/WO_(3) composite.Furthermore,the feasibility of converting various aromatic alcohols to corresponding aldehydes coupled with H_(2) evolution on the CdS/WO_(3) photocatalyst is proved and a reasonable reaction mechanism is proposed.It is hoped that this work can provide a new insight into the construction of direct Z‐scheme photocatalysts to effectively utilize the photogenerated electrons and holes for photocatalytic coupled redox reaction.展开更多
The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-range...The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.展开更多
Helical mesoporous silica nanorods were prepared using cetyltrimethylammonium bromide and achiral alcohols as the co-structure-directing agents. They were characterized using field-emission scanning electron microscop...Helical mesoporous silica nanorods were prepared using cetyltrimethylammonium bromide and achiral alcohols as the co-structure-directing agents. They were characterized using field-emission scanning electron microscopy, transmission electron microscopy, nitrogen sorptions, and small angle X-ray diffraction. The length of the silica nanorods increases with increasing the length of the alcohols. When n-heptanol and n-octanol were used, helical mesoporous silica nanorods with lamellar mesopores on the surfaces were obtained.展开更多
We experimentally demonstrate the recognition of positional isomers of propyl alcohol vapor through nonlinear fluorescence induced by high-intensity femtosecond laser filaments in air. By measuring characteristic fluo...We experimentally demonstrate the recognition of positional isomers of propyl alcohol vapor through nonlinear fluorescence induced by high-intensity femtosecond laser filaments in air. By measuring characteristic fluorescence of n-propyl and isopropyl alcohol vapors produced by femtosecond filament excitation, it is found that they show identical spectra, that is, those from molecular bands of CH, C2, Nit, OH and CN, while the relative intensities are different. By comparing the ratios of the CH and C2 signals, the two propyl alcohol isomers are differentiated. The different signal intensities are ascribed to different ionization potentials of the two isomer molecules, leading to different production efficiencies of fluorescing fragments.展开更多
基金supported by a research grant from the National University of Singapore to WQS(RP-3960366)a collaborative research grant from Sichuan Zhongke Organ Co.Ltd(Chengdu,China).
文摘Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.
基金supported by the Natural Science Foundation of Jiangxi Province(20232ACB213005).
文摘A novel tetra-europium(III)-containing antimonotungstate,Na_(8.2)[H_(2)N(CH_(3))_(2)]_(9)[Na_(10.8)(tar)_(4)(H_(2)O)_(20)(Eu_(2)Sb_(2)W_(21)O_(72))_(2)]·44.5H_(2)O(EuSbW,H_(4)tar=dl-tartaric acid),has been synthesized and characterized.The dimeric polyoxoanion of EuSbW consists of two Dawson-like{Eu_(2)Sb_(2)W_(21)}units bridged by four dl-tartaric acid ligands.The adjacent carboxyl and hydroxy groups in each tartaric acid simultaneously chelate with W and Eu atoms from different{Eu_(2)Sb_(2)W_(21)}units,thereby forming the dimeric structure.EuSbW represents an extremely rare polyoxometalate where four tartaric acid ligands function as connectors to bridge two{Eu_(2)Sb_(2)W_(21)}units.Additionally,EuSbW exhibits excellent catalytic activity and reusability in the oxidation of thioethers and alcohols,achieving 100%conversion and>99%selectivity for various thioethers,and 85–100%conversion with 90–99%selectivity for diverse alcohols under mild conditions.
文摘Synthesis of primary amines from alcohols is an economical and green route to access high-value N-compounds.However,challenges remain to develop both cost-effective and efficient catalysts.In this study,we developed a Ru-Co/ZrO_(2)single-atom alloy catalyst which afforded diverse primary amines from alcohols in the presence of ammonia and hydrogen with exceptional conversion(up to 90%)and selectivity(80%)under mild conditions(0.7 MPa NH_(3),0.3 MPa H_(2),160℃)and exhibited satisfactory stability upon regeneration.The turnover rate was approximately 8.4 times higher than that observed over the Co/ZrO_(2)catalyst.Characterizations indicated that the alloyed Ru facilitated the reduction of Co,strengthened the interaction with H_(2)and mitigated the over-strong adsorption of aldehyde intermediates.These combined effects contributed significantly to the enhanced catalytic performances.This work presents a promising strategy for the development of advanced catalysts in the amination of alcohols.
文摘The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.
基金supported by the National Key Research and Development Program of China(No.2020YFA0607800)the National Natural Science Foundation of China(Nos.42022039 and 42130606)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011),the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y2021013).
文摘Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation at night are still lacking.We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols,E-2-penten-1-ol,Z-2-hexen-1-ol and Z-3-hepten-1-ol,with NO_(3)radicals(NO_(3)•)during the night.The rate constants of these reactions were(11.7±1.76)×10^(−13),(8.55±1.33)×10^(−13)and(6.08±0.47)×10^(−13)cm^(3)/(molecule·s)at 298K and 760 Torr,respectively.In contrast,the reaction rate of similar substances with ozone was about 10^(−18)cm^(3)/(molecule·s),which indicates that the reaction with NO_(3)•is themain oxidation pathway for unsaturated alcohols at night.Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO_(3)•,and the total small molecule aldehydes and ketones yields can reach between 45%-60%.They mainly originate from the breakage of alkoxy radicals,and different breakage sites determine different product distributions.In addition,the SOA yields of the three unsaturated alcohols with NO_(3)•were 7.1%±1.0%,12.5%±1.9%and 30.0%±4.5%,respectively,whichweremuch higher than those of similarly structured substances with O_(3)or OH radicals(•OH).The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol(SOA)of the three unsaturated alcohols are dimeric compounds containing several nitrate groups,which are formed through the polymerization of oxyalkyl radicals.
基金financially supported by the National Key R&D Program of China (2023YFB4104501)the National Natural Science Foundation of China (22372165)+2 种基金the Liaoning Binhai Laboratory (LBLA-2024-01)the Grant. YLU-DNL Fund (2023001)DICP (Grant: DICP I202457)
文摘Regulating the location of the metal promoters plays a vital role in catalyst structure and its catalytic behavior during CO_(2)hydrogenation to higher alcohols.Herein,we selected the metal promoters with a precipitation pH similar to that of Cu^(2+)or Fe^(3+)to prepare a series of CuFe-based catalysts.Characterization results show that doping Al or Cr promoter,located with the Fe phase,suppressed the excessive carburization of the Fe phase and maintained an optimal proportion between Fe_(3)O_(4) and amorphous iron carbide(FeC_(x)),thus exhibiting superior catalytic activity and stability.In contrast,doping Zn or In promoter,located with the Cu phase,underwent a deeper carburization and formed more crys-talline FeC_(x),showing an inferior performance.The CuFeCr catalyst achieved the highest space-time yield of 330 mg g_(cat)^(-1)h^(-1)for higher alcohols among these catalysts.This study provides a novel strategy for opti-mizing the structure of the active phases for CO_(2)hydrogenation.
文摘Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to the inevitable side reactions involving cycloaddition.Herein,the visible-light-mediated O-H functionalization reactions of alkenyl alcohols with diazo compounds were developed.This process competed favorably with the cycloaddition reaction.A series of multifunctional ethers were provided in low to high yields with aryldiazoacetates or 3-diazooxindoles.Biologically relevant spirooxindole-fused oxacycle could be easily accessed from the O-H functionalization product of alkenyl alcohol and 3-diazooxindole.
基金National Natural Science Foundation of China(Nos.22178057 and 21905049)Natural Science Foundation of Fujian Province(Nos.2020J01201 and 2021J01197)+1 种基金Research Foundation of the Academy of Carbon Neutrality of Fujian Normal University(No.TZH2022-07)Award Program for Minjiang Scholar Professorship.
文摘Solar-driven selective upgrading of lignocellulosic biomass-derived alcohols to value-added chemicals and clean fuel hydrogen(H_(2))shows great potential for tackling the energy crisis and environmental pollu-tion issues.Here,we construct a MAPbBr_(3)/ReS_(2) heterostructure by embedding distorted tetragonal(1T)phase ReS_(2) nanoflowers into large-sized MAPbBr_(3) for green value-added utilization of biomass-derived alcohols.The embedded structure effectively enlarges the contact interface between the ReS_(2) and the MAPbBr_(3),and importantly,induces a strong built-in electric field aligned between the spatially well-defined MAPbBr_(3) and ReS_(2) nanoflowers.Moreover,the distorted 1T phase ReS_(2) with low work function well matches the energy band of MAPbBr_(3),forming a heterostructure with a downward band bending at the interface.These features empower the MAPbBr_(3)/ReS_(2) photocatalyst with high capability to promote charge separation and expedite the surface redox reaction.Consequently,optimal BAD and H_(2) production rates of about 1220 μmol h-1 g-1 are realized over a MAPbBr_(3)/ReS_(2) 2%sample,which are approximately 9 times greater than those of blank MAPbBr_(3).This work demonstrates the great potential of constructing an embedded transition metal dichalcogenide@metal halide perovskites heterostructure with downhill interfacial charge transfer for photocatalytic upgrading of biomass-derived alcohols.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金the National Natural Science Foundation of China (No. 22271054)the “1000-Youth Talents Plan”Fudan University (start-up grant) for financial support.
文摘Chiral alcohols and amines are important structural units widely existing in pharmaceuticals,agrochemicals,and food additives.Dynamic kinetic resolution(DKR)is an efficient strategy to deliver optically active alcohols and amines from their racemates.For the development of DKR method,racemization catalyst plays as a crucial element with the requirement of compatibility with the kinetic resolution(KR)system.In this paper,recent advance in the catalytic racemization of secondary alcohols and amines is summarized based on different types of racemizing intermediates,which are redox racemization via ketone/imine intermediates,racemization via radical intermediates,and racemization via carbocation intermediates.Enzymatic racemization of secondary alcohols and amines is also enclosed.
基金supported by the National Natural Science Foundation of China(22138004 and 32001828).
文摘Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages. A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS) was established to analyze the metabolism pattern of higher alcohols in rat plasma after gavage of 4 common alcoholic beverages including huangjiu, baijiu, wine and brandy. 7 mL of dichloromethane was determined as the optimal extraction condition, and 8 higher alcohols were precisely quantified with detection limits of 1.82-11.65 μg/L, recoveries of 89.07%-110.89% and fine repeatability. The fastest absorption and elimination rates of plasma total higher alcohols were observed in baijiu and huangjiu group, respectively, and the highest peak concentration was found in brandy group. Additionally, the metabolic rate of plasma isoamyl alcohol in huangjiu group was faster than that in wine group at the same intragastric administration dosage. This study may provide potential insight for evaluation of alcoholic beverage quality.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2021MB065)Scientific Research Startup Foundation of Qufu Normal University and National Natural Science Foundation of China(No.22101237)。
文摘A simple and additive-free protocol has been developed for the preparation ofβ-keto phosphorodithioates through the three-component reaction of easily available sulfoxonium ylides,P_(4)S_(10),and alcohols.The present geminal hydro-phosphorodithiolation reaction was performed at room temperature to construct a series ofβ-keto phosphorodithioates in the absence of any metal reagents,bases,or additives.
基金Financial support from the National Natural Science Foundation of China(No.22271060)the Department of Chemistry at Fudan UniversityNanjing Forestry University。
文摘Utilizing CO_(2)for the production of bulky and valuable chemicals presents an attractive solution to address environmental and fossil energy crises.Among the various approaches,direct carboxylation of alcohols with CO_(2)stands out as an eco-friendly process capable of efficiently producing carboxylic acids in a sustainable manner.However,the high dissociation energy of the C–O bond poses a significant challenge in this process.Over the past few decades,several strategies have been developed to activate alcohols and establish efficient catalytic systems for carboxylation with CO_(2).Nevertheless,the sporadic nature of reported approaches makes it difficult to determine the most effective one.This perspective aims to provide an overview of the current state-of-the-art catalytic protocols for carboxylating alcohols with CO_(2),encompassing esterification,halogenation,and photocatalysis,while considering their respective advantages and limitations.We aim to discern the most promising avenues for future development in this field.The insights presented in this perspective will contribute to the advancement of efficient and sustainable carboxylation methods using CO_(2),leading to the production of valuable chemicals in future.
文摘Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission.
文摘A mild,green,convenient and scalable N-bromosuccinimide(NBS)promoted direct phosphorylation strategy of secondary phosphine oxides and alcohols for the synthesis of various phosphinate esters was developed.A variety of substrates are well-tolerated and the desirable compounds were afforded in moderate to excellent yields(up to 92%).This reaction is conducted at room temperature without the addition of any oxidant and metal catalyst,which provides a new strategy for the synthesis of phosphinate esters.
文摘The propargylation of various nucleophiles including indoles,phenol,anisole,enoxysilanes,and alcohols was rapidly achieved using catalytic copper(Ⅱ)triflate.The reaction conditions are mild,allowing for quick reactions in an undried solvent and under atmospheric air.The desired products are obtained with good yields.
文摘Simultaneously utilizing photogenerated electrons and holes to convert renewable biomass and its derivatives into corresponding value‐added products and hydrogen(H_(2))is a promising strategy to deal with the energy and environmental crisis.Herein,we report a facile hydrothermal method to construct a direct Z‐scheme CdS/WO_(3) binary composite for photocatalytic coupling redox reaction,simultaneously producing H_(2) and selectively converting aromatic alcohols into aromatic aldehydes in one pot.Compared with bare CdS and WO_(3),the CdS/WO_(3) binary composite exhibits significantly enhanced performance for this photocatalytic coupled redox reaction,which is ascribed to the ex‐tended light harvesting range,efficient charge carrier separation rate and optimized redox capabil‐ity of CdS/WO_(3) composite.Furthermore,the feasibility of converting various aromatic alcohols to corresponding aldehydes coupled with H_(2) evolution on the CdS/WO_(3) photocatalyst is proved and a reasonable reaction mechanism is proposed.It is hoped that this work can provide a new insight into the construction of direct Z‐scheme photocatalysts to effectively utilize the photogenerated electrons and holes for photocatalytic coupled redox reaction.
基金financially supported by the National Natural Science Foundation of China (No.21536007)the 111 Project (B17030)+1 种基金support from China Scholarship Council (CSC No.202006240156)the Spanish Ministry of Science,Innovation and Universities for the Juan de la Cierva (JdC)fellowships (Grant Numbers FJCI-2016-30847 and IJC2018-037110-I)awarded.
文摘The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.
基金supported by the Natural Science Foundation of Jiangsu Province(NoBK2011354)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD)the National Natural Science Foundation of China(Nos21104053,21071103,and 21074086)
文摘Helical mesoporous silica nanorods were prepared using cetyltrimethylammonium bromide and achiral alcohols as the co-structure-directing agents. They were characterized using field-emission scanning electron microscopy, transmission electron microscopy, nitrogen sorptions, and small angle X-ray diffraction. The length of the silica nanorods increases with increasing the length of the alcohols. When n-heptanol and n-octanol were used, helical mesoporous silica nanorods with lamellar mesopores on the surfaces were obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61427816 and 61235003the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20130061110047the Open Fund of the State Key Laboratory of High Field Laser Physics
文摘We experimentally demonstrate the recognition of positional isomers of propyl alcohol vapor through nonlinear fluorescence induced by high-intensity femtosecond laser filaments in air. By measuring characteristic fluorescence of n-propyl and isopropyl alcohol vapors produced by femtosecond filament excitation, it is found that they show identical spectra, that is, those from molecular bands of CH, C2, Nit, OH and CN, while the relative intensities are different. By comparing the ratios of the CH and C2 signals, the two propyl alcohol isomers are differentiated. The different signal intensities are ascribed to different ionization potentials of the two isomer molecules, leading to different production efficiencies of fluorescing fragments.