A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate a...A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer,so as to reduce the system defects.At the same time,the influence of different interface structures of Al In Sb on the surface morphology of buffer layer is explored.The propagation mechanism of defects with the growth of buffer layer is compared and analyzed.The relationship between the quality of In Sb thin films and the structure of buffer layer is summarized.Finally,the growth of high quality In Sb thin films is realized.展开更多
In this paper,a planar junction mid-wavelength infrared(MWIR)photodetector based on an InAs/GaSb type-Ⅱsuper-lattices(T2SLs)is reported.The Intrinsic-πMN superlattices was grown by the molecular beam epitaxy(MBE),fo...In this paper,a planar junction mid-wavelength infrared(MWIR)photodetector based on an InAs/GaSb type-Ⅱsuper-lattices(T2SLs)is reported.The Intrinsic-πMN superlattices was grown by the molecular beam epitaxy(MBE),followed with a ZnS layer grown by the chemical vapor deposition(CVD).The p-type contact layer was constructed by thermal diffusion in the undoped superlattices.The Zinc atom was successfully realised into the superlattice and a PπMN T2SL structure was con-structed.Furthermore,the effects of different diffusion temperatures on the dark current performance of the devices were researched.The 50%cut-off wavelength of the photodetector is 5.26μm at 77 K with 0 V bias.The minimum dark current density is 8.67×10^(−5) A/cm^(2) and the maximum quantum efficiency of 42.5%,and the maximum detectivity reaches 3.90×10^(10) cm·Hz^(1/2)/W at 77 K.The 640×512 focal plane arrays(FPA)based on the planner junction were fabricated afterwards.The FPA achieves a noise equivalent temperature difference(NETD)of 539 mK.展开更多
With high surface-to-volume ratio,the abundant surface states and high carrier concentration are challenging the nearinfrared photodetection behaviors of narrow band gap semiconductors nanowires.In this study,the narr...With high surface-to-volume ratio,the abundant surface states and high carrier concentration are challenging the nearinfrared photodetection behaviors of narrow band gap semiconductors nanowires.In this study,the narrow band gap semiconductor of Bi_(2)O_(2)Se nanosheets(NSs)is adopted to construct mixed-dimensional heterojunctions with GaSb nanowires(NWs)for demonstrating the impressive self-powered NIR photodetection.Benefiting from the built-in electric field of~140 meV,the as-constructed NW/NS mixeddimensional heterojunction self-powered photodetector shows the low dark current of 0.07 pA,high I_(light)/I_(dark)ratio of 82 and fast response times of<2/2 ms at room temperature.The self-powered photodetector performance can be further enhanced by fabricating the NW array/NS mixed-dimensional heterojunction by using a contact printing technique.The excellent photodetection performance promises the asconstructed NW/NS mixed-dimensional heterojunction self-powered photodetector in imaging and photocommunication.展开更多
报道了320×256元InAs/GaSb II类超晶格红外双色焦平面阵列探测器的初步结果.探测器采用PN-NP叠层双色外延结构,信号提取采用顺序读出方式.运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为7 ...报道了320×256元InAs/GaSb II类超晶格红外双色焦平面阵列探测器的初步结果.探测器采用PN-NP叠层双色外延结构,信号提取采用顺序读出方式.运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为7 ML InAs/7 ML GaSb和10 ML InAs/10 ML GaSb.焦平面阵列像元中心距为30μm.在77 K时测试,器件双色波段的50%响应截止波长分别为4.2μm和5.5μm,其中N-on-P器件平均峰值探测率达到6.0×10^(10) cmHz^(1/2)W^(-1),盲元率为8.6%;P-on-N器件平均峰值探测率达到2.3×10~9 cmHz^(1/2)W^(-1),盲元率为9.8%.红外焦平面偏压调节成像测试得到较为清晰的双波段成像.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774130,11474248,61790581,and 51973070)the Ph.D.Program Foundation of the Ministry of Education of China(Grant No.20105303120002)the National Key Technology Research and Development Program of China(Grant No.2018YFA0209101)。
文摘A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer,so as to reduce the system defects.At the same time,the influence of different interface structures of Al In Sb on the surface morphology of buffer layer is explored.The propagation mechanism of defects with the growth of buffer layer is compared and analyzed.The relationship between the quality of In Sb thin films and the structure of buffer layer is summarized.Finally,the growth of high quality In Sb thin films is realized.
基金supported by the National Key Technologies R&D Program of China(Grant Nos.2024YFA1208904,2019YFA0705203)Major Program of the National Natural Science Foundation of China(Grant Nos.62004189,61274013)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0460000)the Research Foundation for Advanced Talents of the Chinese Academy of Sciences(Grant No.E27RBB03).
文摘In this paper,a planar junction mid-wavelength infrared(MWIR)photodetector based on an InAs/GaSb type-Ⅱsuper-lattices(T2SLs)is reported.The Intrinsic-πMN superlattices was grown by the molecular beam epitaxy(MBE),followed with a ZnS layer grown by the chemical vapor deposition(CVD).The p-type contact layer was constructed by thermal diffusion in the undoped superlattices.The Zinc atom was successfully realised into the superlattice and a PπMN T2SL structure was con-structed.Furthermore,the effects of different diffusion temperatures on the dark current performance of the devices were researched.The 50%cut-off wavelength of the photodetector is 5.26μm at 77 K with 0 V bias.The minimum dark current density is 8.67×10^(−5) A/cm^(2) and the maximum quantum efficiency of 42.5%,and the maximum detectivity reaches 3.90×10^(10) cm·Hz^(1/2)/W at 77 K.The 640×512 focal plane arrays(FPA)based on the planner junction were fabricated afterwards.The FPA achieves a noise equivalent temperature difference(NETD)of 539 mK.
基金the Natural Science Foundation of Shandong Province(Nos.ZR2022JQ05 and ZR2024MF010).
文摘With high surface-to-volume ratio,the abundant surface states and high carrier concentration are challenging the nearinfrared photodetection behaviors of narrow band gap semiconductors nanowires.In this study,the narrow band gap semiconductor of Bi_(2)O_(2)Se nanosheets(NSs)is adopted to construct mixed-dimensional heterojunctions with GaSb nanowires(NWs)for demonstrating the impressive self-powered NIR photodetection.Benefiting from the built-in electric field of~140 meV,the as-constructed NW/NS mixeddimensional heterojunction self-powered photodetector shows the low dark current of 0.07 pA,high I_(light)/I_(dark)ratio of 82 and fast response times of<2/2 ms at room temperature.The self-powered photodetector performance can be further enhanced by fabricating the NW array/NS mixed-dimensional heterojunction by using a contact printing technique.The excellent photodetection performance promises the asconstructed NW/NS mixed-dimensional heterojunction self-powered photodetector in imaging and photocommunication.
文摘报道了320×256元InAs/GaSb II类超晶格红外双色焦平面阵列探测器的初步结果.探测器采用PN-NP叠层双色外延结构,信号提取采用顺序读出方式.运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为7 ML InAs/7 ML GaSb和10 ML InAs/10 ML GaSb.焦平面阵列像元中心距为30μm.在77 K时测试,器件双色波段的50%响应截止波长分别为4.2μm和5.5μm,其中N-on-P器件平均峰值探测率达到6.0×10^(10) cmHz^(1/2)W^(-1),盲元率为8.6%;P-on-N器件平均峰值探测率达到2.3×10~9 cmHz^(1/2)W^(-1),盲元率为9.8%.红外焦平面偏压调节成像测试得到较为清晰的双波段成像.