Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large...Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.展开更多
This study investigated the effects of adding graphene nanoplates(GNPs)and carbon nanotubes(CNTs)into the Al7075 matrix via the stir casting method on the microstructure and mechanical properties of the fabricated com...This study investigated the effects of adding graphene nanoplates(GNPs)and carbon nanotubes(CNTs)into the Al7075 matrix via the stir casting method on the microstructure and mechanical properties of the fabricated composites.By increasing the volume fraction of rein-forcements,the fraction of porosity increased.The X-ray diffraction results showed that the addition of reinforcements into the Al7075 changed the dominant crystal orientation from(002)to(111).Field emission scanning electron microscopy images also showed the distribution of clustered reinforcements in the matrix.Between the two reinforcements,the addition of CNTs generated a lower fraction of porosities.Through the addition of 0.52vol%GNPs into the matrix,the hardness,ultimate tensile strength and uniform elongation increased by 44%,32%,and 180%,respectively.Meanwhile,the presence of 0.71vol%CNTs in the matrix increased the hardness,tensile strength and uniform elongation by 108%,129%,and 260%,respectively.展开更多
Fatigue properties of Al7075-T6 alloy joined by temperature gradient transient liquid phase(TGTLP) diffusion bonding using liquid gallium interlayer was investigated. The fatigue specimen was jointed at 460 °C un...Fatigue properties of Al7075-T6 alloy joined by temperature gradient transient liquid phase(TGTLP) diffusion bonding using liquid gallium interlayer was investigated. The fatigue specimen was jointed at 460 °C under 10 MPa pressure for 10 min. The TLP bonded samples were homogenized at 465 °C for 2 h and then T6-heat treated. The fatigue life of Al7075-T6 alloy was determined as 107 cycles under 90 MPa while the fatigue life of TLP bonded sample under this stress amplitude was 1.2×106 cycles, which is about 10% of the total Al7075 alloy fatigue life. The fatigue fracture surfaces of Al7075 sample and TGTLP bonded sample were studied using scanning electron microscope to characterize the nucleation sites and crack growth stages in both samples.展开更多
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu...Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.展开更多
Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical propert...Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical properties MMCs was done by many researchers;however in depth study on the oxidation behavior of cenosphere, reinforced MMCs are required, since the application of Aluminum-based MMCs is extensively used in applications like automobile, navigation and aviation, where the demand on light weight corrosion resistance material is very much required. In the present work varied compositions of Al7075 grade Aluminum-cenosphere composites use liquid metallurgy route adopting stir casting approach. The experimental study was aimed at experimental investigations of developed composites under different corrosive environments. The corrosion tests were carried out as per ASTM standards. Salt spray test using NaCl was carried out as per ASTM B117 and immersion tests using NaCl and NaOH as corrodents were carried out by following ASTM G31 standards. The results obtained from the tests revealed that as increase in weight % of reinforcement, corrosion resistance increases up to 7.5% reinforcement, and further the corrosion resistance decreases marginally. Solution heat treated samples exhibited higher resistance to oxidation than cast samples in all corrosive environments. The SEM images show the presence of micro cracks and occurrence of pitting corrosion on the corrosion tested specimens.展开更多
In the present study, 3D-finite element method was conducted to investigate the deformation characteristics of Al7075 alloy during integrated extrusion-equal channel angular pressing. Effective strain, strain rate, me...In the present study, 3D-finite element method was conducted to investigate the deformation characteristics of Al7075 alloy during integrated extrusion-equal channel angular pressing. Effective strain, strain rate, mean stress, and damage distributions were evaluated. Severe cracking was observed at Al7075 sample after extrusion-equal channel angular pressing. Finite element results show that cracking is due to the positive mean stress and damage accumulation at the top surface of sample.展开更多
Al7075 sheets are widely used in aerospace industry and their higher strength-plasticity collaborative improvement requirement is urgent.In this study,the microstructure inheriting the evolution and me-chanical proper...Al7075 sheets are widely used in aerospace industry and their higher strength-plasticity collaborative improvement requirement is urgent.In this study,the microstructure inheriting the evolution and me-chanical properties of Al7075 sheets during multidirectional rotary forging(MRF)and T6 heat treatment are analyzed.The results show that the average grain size exhibits near-parabolic evolution with increas-ing MRF deformation amount.MRF20%+T6(20%MRF deformation amount+T6)condition possesses the largest grain size of 72.6μm,and its abnormal grain growth mechanism is that the medium deformation energy and high deformation heterogeneity in MRF20%deformed grains could cause asynchronous re-crystallization behavior during T6 heat treatment,and the grains with comparatively higher deformation energy get recrystallized firstly and devour adjacent grains along preferred011or223misorientation axis.MRF70%+T6 condition possesses the finest grain size of 14.2μm,and its fine grain inheriting mech-anism is that the uniformly high deformation energy in MRF70%deformed grains causes uniformly rapid recrystallization,and rapidly recrystallized grains effectively suppress grain boundary motion from adja-cent grains.With increasing MRF deformation amount,tensile strength and elongation values both exhibit near-antiparabolic evolution.MRF70%+T6 condition possesses the largest tensile strength(563 MPa)and elongation(17.73%),which increases by 8.27%and 80.55%compared to as-annealed+T6(MRF0%+T6)condition(tensile strength is 520 MPa and elongation is 9.82%),respectively.The strength-plasticity col-laborative improvement is mainly because the combination of effectively inherited fine grains,refined inclusion particles,and uniformly distributed fineη’particles after T6 heat treatment could promote smooth dislocation movement and coordinated slip behavior in most matrix grains,which contributes to the delay of stress localization and strength-plasticity collaborative improvement.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fr...Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly.展开更多
基金Project(2016YFB1100101)supported by the National Key Research and Development Program of China。
文摘Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.
文摘This study investigated the effects of adding graphene nanoplates(GNPs)and carbon nanotubes(CNTs)into the Al7075 matrix via the stir casting method on the microstructure and mechanical properties of the fabricated composites.By increasing the volume fraction of rein-forcements,the fraction of porosity increased.The X-ray diffraction results showed that the addition of reinforcements into the Al7075 changed the dominant crystal orientation from(002)to(111).Field emission scanning electron microscopy images also showed the distribution of clustered reinforcements in the matrix.Between the two reinforcements,the addition of CNTs generated a lower fraction of porosities.Through the addition of 0.52vol%GNPs into the matrix,the hardness,ultimate tensile strength and uniform elongation increased by 44%,32%,and 180%,respectively.Meanwhile,the presence of 0.71vol%CNTs in the matrix increased the hardness,tensile strength and uniform elongation by 108%,129%,and 260%,respectively.
文摘Fatigue properties of Al7075-T6 alloy joined by temperature gradient transient liquid phase(TGTLP) diffusion bonding using liquid gallium interlayer was investigated. The fatigue specimen was jointed at 460 °C under 10 MPa pressure for 10 min. The TLP bonded samples were homogenized at 465 °C for 2 h and then T6-heat treated. The fatigue life of Al7075-T6 alloy was determined as 107 cycles under 90 MPa while the fatigue life of TLP bonded sample under this stress amplitude was 1.2×106 cycles, which is about 10% of the total Al7075 alloy fatigue life. The fatigue fracture surfaces of Al7075 sample and TGTLP bonded sample were studied using scanning electron microscope to characterize the nucleation sites and crack growth stages in both samples.
文摘Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.
文摘Aluminum-based metal matrix composites (MMCs) are considered in several technological applications owing to their enhanced mechanical properties when compared with monolithic metals. Research on the mechanical properties MMCs was done by many researchers;however in depth study on the oxidation behavior of cenosphere, reinforced MMCs are required, since the application of Aluminum-based MMCs is extensively used in applications like automobile, navigation and aviation, where the demand on light weight corrosion resistance material is very much required. In the present work varied compositions of Al7075 grade Aluminum-cenosphere composites use liquid metallurgy route adopting stir casting approach. The experimental study was aimed at experimental investigations of developed composites under different corrosive environments. The corrosion tests were carried out as per ASTM standards. Salt spray test using NaCl was carried out as per ASTM B117 and immersion tests using NaCl and NaOH as corrodents were carried out by following ASTM G31 standards. The results obtained from the tests revealed that as increase in weight % of reinforcement, corrosion resistance increases up to 7.5% reinforcement, and further the corrosion resistance decreases marginally. Solution heat treated samples exhibited higher resistance to oxidation than cast samples in all corrosive environments. The SEM images show the presence of micro cracks and occurrence of pitting corrosion on the corrosion tested specimens.
文摘In the present study, 3D-finite element method was conducted to investigate the deformation characteristics of Al7075 alloy during integrated extrusion-equal channel angular pressing. Effective strain, strain rate, mean stress, and damage distributions were evaluated. Severe cracking was observed at Al7075 sample after extrusion-equal channel angular pressing. Finite element results show that cracking is due to the positive mean stress and damage accumulation at the top surface of sample.
基金supported by the National Natural Science Foundation of China(No.U21A20131)the Technical Development Project of COMAC Shanghai Aircraft Manufacturing Co.,Ltd.(No.COMAC-SFGS-2023-631)the 111 Project(No.B17034),andthe In-novative Research Team Development Program of Ministry of Edu-cation of China(No.IRT17R83).
文摘Al7075 sheets are widely used in aerospace industry and their higher strength-plasticity collaborative improvement requirement is urgent.In this study,the microstructure inheriting the evolution and me-chanical properties of Al7075 sheets during multidirectional rotary forging(MRF)and T6 heat treatment are analyzed.The results show that the average grain size exhibits near-parabolic evolution with increas-ing MRF deformation amount.MRF20%+T6(20%MRF deformation amount+T6)condition possesses the largest grain size of 72.6μm,and its abnormal grain growth mechanism is that the medium deformation energy and high deformation heterogeneity in MRF20%deformed grains could cause asynchronous re-crystallization behavior during T6 heat treatment,and the grains with comparatively higher deformation energy get recrystallized firstly and devour adjacent grains along preferred011or223misorientation axis.MRF70%+T6 condition possesses the finest grain size of 14.2μm,and its fine grain inheriting mech-anism is that the uniformly high deformation energy in MRF70%deformed grains causes uniformly rapid recrystallization,and rapidly recrystallized grains effectively suppress grain boundary motion from adja-cent grains.With increasing MRF deformation amount,tensile strength and elongation values both exhibit near-antiparabolic evolution.MRF70%+T6 condition possesses the largest tensile strength(563 MPa)and elongation(17.73%),which increases by 8.27%and 80.55%compared to as-annealed+T6(MRF0%+T6)condition(tensile strength is 520 MPa and elongation is 9.82%),respectively.The strength-plasticity col-laborative improvement is mainly because the combination of effectively inherited fine grains,refined inclusion particles,and uniformly distributed fineη’particles after T6 heat treatment could promote smooth dislocation movement and coordinated slip behavior in most matrix grains,which contributes to the delay of stress localization and strength-plasticity collaborative improvement.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金Project (2011CB606302-1) supported by the National Basic Research Program of ChinaProject (51074024) supported by the National Natural Science Foundation of China
文摘Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly.