The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as ...The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I...Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxi...Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.展开更多
Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electro...Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electrolyzing the zirco-nium oxychloride octahydrate(ZOC) solution in the presence of acetic acid and sugar( sucrose, glucrose or fructose) , in which the molar ratios of CH3 COOH/ZOC and sugar/ZOC were 1.0-4.0 and 0.2-0.4, respectively. The pre- pared tetragonal zireonia fibers sintered at different temperatures showed smooth and crack-free surfaces with diame, ters of 5-10 μm. The addition of Al2O3 enhanced the sintering process and prevented the crystals from growing. Thermogravimetric analysis(TG), X-ray diffraction ( XRD ), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscope(SEM) techniques were used to characterize the prepared fibers.展开更多
The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was disc...The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.展开更多
In this paper,a novel Ce(Gd2 Y)Al5O12/Ce:Y3Al5O12(Ce:GYAG/Ce:YAG)composite scintillation ceramic was designed and fabricated by a solid-state reaction method.The phase,luminescence and scintillation properties were in...In this paper,a novel Ce(Gd2 Y)Al5O12/Ce:Y3Al5O12(Ce:GYAG/Ce:YAG)composite scintillation ceramic was designed and fabricated by a solid-state reaction method.The phase,luminescence and scintillation properties were investigated.The Ce:GYAG/Ce:YAG composite ceramic consisting of two-phase has a broad emission band ranging from 500 to 750 nm.The total mass attenuation coefficient of Ce:GYAG/Ce:YAG is 0.3864 cm^-1,in between those of Ce:YAG and Ce:GYAG ceramics.In addition,the composite ceramic had a high light yield of 20430 ph/MeV.By controlling the ratio of GYAG and YAG,the composite ceramic can realize a spectrum design and total mass attenuation coefficient control to meet the requirements for wide-X-ray-energy-range detectors.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
The wetting behavior between liquid aluminium and substrates made from industrial Al2O3 and SiC based ceramic foam filters (CFF) was investigated. The same CFF filters were also tested in plant scale filtration expe...The wetting behavior between liquid aluminium and substrates made from industrial Al2O3 and SiC based ceramic foam filters (CFF) was investigated. The same CFF filters were also tested in plant scale filtration experiments. The wetting experiment results show that the SiC based filter material is better wetted by liquid aluminium than the Al2O3 based filter material. This indicates that the improved wetting of aluminium on a filter material is an advantage for molten metal to infiltrate the filter during priming. Also, better wetting of Al-filter might increase the removal efficiency of inclusions during filtration due to better contact between filter and metal. Non-wetted inclusions are easier to be removed.展开更多
The effects of Al2O3 addition on both the sintering behavior and microwave dielectric properties of PbO-B203-SiO2 glass ceramics were investigated by Fourier transform infrared spectroscope (FTIR), differential ther...The effects of Al2O3 addition on both the sintering behavior and microwave dielectric properties of PbO-B203-SiO2 glass ceramics were investigated by Fourier transform infrared spectroscope (FTIR), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that with the increase of Al2O3 content the bands assigned to [SiO4] nearly disappear. Aluminum replaces silicon in the glass network, which is helpful for the formation of boron-oxygen rings. The increase of the transition temperature Tg and softening temperature Tf of PbO-B2O3-SiO2 glass ceramics leads to the increase of liquid phase precipitation temperature and promotes the structure stability in the glasses, and consequently contributes to the decreasing trend of crystallization. Densification and dielectric constants increase with the increase of Al2O3 content, but the dielectric loss is worsened. By contrast, the 3% (mass fraction) Al2O3-doped glass ceramics sintered at 725℃ have better properties of density p=2.72 g/cm3, dielectric constant Er=6.78, dielectric loss tan8=2.6×10^-3 (measured at 9.8 GHz), which suggest that the glass ceramics can be applied in multilayer microwave devices requiring low sintering temperatures.展开更多
The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstru...The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.展开更多
BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechan...BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechanical properties and plasma erosion resistance were also investigated. With the increase of h-BNp content, relative density and Vickers' hardness of the composite ceramics decrease, while the flexural strength, elastic modulus and fracture toughness increase and then decrease. The plasma erosion resistance linearly deteriorated with the increase of BNp content which is mainly determined by the density, crystal structure and atomic number of the elements.展开更多
Directionally solidified eutectic ceramics such as Al2O3/ZrO2 are promising structural materials for ap- plications in harsh environment with an ultrahigh temperature. In this work, through adopting assistant heating ...Directionally solidified eutectic ceramics such as Al2O3/ZrO2 are promising structural materials for ap- plications in harsh environment with an ultrahigh temperature. In this work, through adopting assistant heating laser 3D printing, Al2O3/ZrO2 eutectic samples were manufactured with suppressing the forma- tion of cracks. The dependence of the average rod spacing (λav) on the scanning rate (V) follows a relation with λavV0.5 = 1 μm1.5 s^-0.5. Typical eutectic microstructures, so-called complex regular, were analyzed with respect to its evolution with modulating the growth conditions. Formation mechanism of the solidifi- cation defect, shrinkage porosity, was discussed and the defect is found to be significantly suppressed by optimizing the solidification parameters. The maximum hardness and fracture toughness are mea- sured to he 16.7 GPa and 4.5 MPa m1/2, respectively. The interplay between the propagation of cracks and the Al2O3/ZrO2 interface is discussed.展开更多
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ...The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.展开更多
In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network mo...In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F), centrifugal acceleration (v) and sintering temperature (T), while the only output was the ultimate compressive strength ((7). According to the registered BP model, the effects of F, v, T on 0 were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.展开更多
The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obta...The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obtain cell struts with high packing density.Aqueous Al2O3-ZrO2 slurries with up to 50 vol.% solid contents were prepared and the rheological characteristic of the slurries was investigated.Consolidation was performed at an acceleration of 2,860 g for 60 min.The effect of the characteristic of plant seeds on the drying behavior of Al2O3-ZrO2 green compact was analyzed.The effects of the solid contents of slurries on segregation phenomena of Al2O3 and ZrO2 particles and green compact uniformity were investigated.The compressive stress-strain curve and deformation behavior of Al2O3-ZrO2 ceramic foams prepared using plant seed template were analyzed.The results showed segregation phenomenon is negligible for highly stable slurry with 50 vol.% solid loading.The prepared cell struts of Al2O3-ZrO2 foams have high green density (61.9% TD), sintered density (99.1% TD) and homogeneous microstructure.When sintered at 1,550 ℃ for 2 h, the cell size of Al2O3-ZrO2 foam is approximately uniform and the diameter is about 1.1 mm.The porosity and compressive strength of sintered products is 66.2% and 5.86 MPa, respectively.展开更多
Rules and mechanism of damage in Al2O3 coatings irradiated by CO2 CW laser are studied in order to improve the ability of parts of equipment standing against the high power laser. Al2O3 coatings were sprayed by air pl...Rules and mechanism of damage in Al2O3 coatings irradiated by CO2 CW laser are studied in order to improve the ability of parts of equipment standing against the high power laser. Al2O3 coatings were sprayed by air plasma spray(APS) on the 45^# steel substrate, and then were irradiated by CO2 CW laser from 795 W/cm^2 to 31 830 W/cm^2. As the output power of the laser is increasing, its porosity is increasing and cracks are appearing and spreading quickly, And also the phase will transform from γ-Al2O3 to a-Al2O3 in the damaged areas. When the energy density is 17 507 W/cm^2, the coatings are destroyed completely. The thermal infection field on substrate is rather small. The laser energy is depleted by the phase transformation and cracks in Al2O3 coatings during the laser thermal shock.展开更多
Large size,high-density(99.97%)and well-organized Al2O3/Y3Al5O12(YAG)eutectic ceramics were prepared by the modified Bridgman method.The evolution of the three dimensional microstructure and micropores were investigat...Large size,high-density(99.97%)and well-organized Al2O3/Y3Al5O12(YAG)eutectic ceramics were prepared by the modified Bridgman method.The evolution of the three dimensional microstructure and micropores were investigated.The diameter of the micro-pores and the porosity decreased during directional solidification.The average equivalent diam eter of the micro-pores was 2.41μm in the well-prepared eutectic ceramics.Most of the pores(98.07%)were smaller than 4μm.These data are comparable to those prepared by the optical floating zone method.The as-grown eutectic ceramics were polycrystalline,but the interfaces were well-bonded and there were no amorphous phases in the microstructure.The misfits of the different crystallographic relationships were calculated,and the bottleneck of the single-crystal preparation was identified.These results could provide theoretical guidance for the preparation of large,single-crystal Al2O3/YAG eutectic ceramics by the modified Bridgman method.展开更多
基金the financial support from the 261Project of MIIT and Natural Science Foundation of Jiangsu Province(No.BK20240179)。
文摘The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206).
文摘Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.
基金Supported by National High Technology Research and Development Program of China(No.2002AA2040).
文摘Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electrolyzing the zirco-nium oxychloride octahydrate(ZOC) solution in the presence of acetic acid and sugar( sucrose, glucrose or fructose) , in which the molar ratios of CH3 COOH/ZOC and sugar/ZOC were 1.0-4.0 and 0.2-0.4, respectively. The pre- pared tetragonal zireonia fibers sintered at different temperatures showed smooth and crack-free surfaces with diame, ters of 5-10 μm. The addition of Al2O3 enhanced the sintering process and prevented the crystals from growing. Thermogravimetric analysis(TG), X-ray diffraction ( XRD ), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscope(SEM) techniques were used to characterize the prepared fibers.
文摘The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.
基金financially supported by the National Natural Science Foundation of China(Nos.61378069,61405221,and 11535010)Youth Innovation Promotion Association of the Chinese Academy of Science(CAS)+2 种基金National Key Research and Development Program of China(SQ2017YFGX010025-03)Interdisciplinary Innovation Team of the CASGeneral Financial Grant from the China Postdoctoral Science Foundation(No.2016M601654)
文摘In this paper,a novel Ce(Gd2 Y)Al5O12/Ce:Y3Al5O12(Ce:GYAG/Ce:YAG)composite scintillation ceramic was designed and fabricated by a solid-state reaction method.The phase,luminescence and scintillation properties were investigated.The Ce:GYAG/Ce:YAG composite ceramic consisting of two-phase has a broad emission band ranging from 500 to 750 nm.The total mass attenuation coefficient of Ce:GYAG/Ce:YAG is 0.3864 cm^-1,in between those of Ce:YAG and Ce:GYAG ceramics.In addition,the composite ceramic had a high light yield of 20430 ph/MeV.By controlling the ratio of GYAG and YAG,the composite ceramic can realize a spectrum design and total mass attenuation coefficient control to meet the requirements for wide-X-ray-energy-range detectors.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金the Research Council of Norway (RCN) funded BIP Project No. 179947/I40 and BIA Project No. 219940/O30the partners: Alcoa Norway ANS, SAPA Heat Transfer AB, Hydro Aluminium AS, SINTEF MK Trondheim, and NTNUFunding by the industrial partners and RCN
文摘The wetting behavior between liquid aluminium and substrates made from industrial Al2O3 and SiC based ceramic foam filters (CFF) was investigated. The same CFF filters were also tested in plant scale filtration experiments. The wetting experiment results show that the SiC based filter material is better wetted by liquid aluminium than the Al2O3 based filter material. This indicates that the improved wetting of aluminium on a filter material is an advantage for molten metal to infiltrate the filter during priming. Also, better wetting of Al-filter might increase the removal efficiency of inclusions during filtration due to better contact between filter and metal. Non-wetted inclusions are easier to be removed.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institution, China
文摘The effects of Al2O3 addition on both the sintering behavior and microwave dielectric properties of PbO-B203-SiO2 glass ceramics were investigated by Fourier transform infrared spectroscope (FTIR), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that with the increase of Al2O3 content the bands assigned to [SiO4] nearly disappear. Aluminum replaces silicon in the glass network, which is helpful for the formation of boron-oxygen rings. The increase of the transition temperature Tg and softening temperature Tf of PbO-B2O3-SiO2 glass ceramics leads to the increase of liquid phase precipitation temperature and promotes the structure stability in the glasses, and consequently contributes to the decreasing trend of crystallization. Densification and dielectric constants increase with the increase of Al2O3 content, but the dielectric loss is worsened. By contrast, the 3% (mass fraction) Al2O3-doped glass ceramics sintered at 725℃ have better properties of density p=2.72 g/cm3, dielectric constant Er=6.78, dielectric loss tan8=2.6×10^-3 (measured at 9.8 GHz), which suggest that the glass ceramics can be applied in multilayer microwave devices requiring low sintering temperatures.
基金This project was sponsored by "863" Project (No. 2003AA322020)
文摘The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.
基金Project(HIT.NSRIF.2010112)supported by the Fundamental Research Fund for the Central Universities,ChinaProjects(50902030,51021002)supported by the National Natural Science Foundation of China
文摘BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechanical properties and plasma erosion resistance were also investigated. With the increase of h-BNp content, relative density and Vickers' hardness of the composite ceramics decrease, while the flexural strength, elastic modulus and fracture toughness increase and then decrease. The plasma erosion resistance linearly deteriorated with the increase of BNp content which is mainly determined by the density, crystal structure and atomic number of the elements.
基金the National Natural Science Foundation of China (No. 81170983) China Postdoctoral Science Foundation (No. 2015M572597)
文摘Directionally solidified eutectic ceramics such as Al2O3/ZrO2 are promising structural materials for ap- plications in harsh environment with an ultrahigh temperature. In this work, through adopting assistant heating laser 3D printing, Al2O3/ZrO2 eutectic samples were manufactured with suppressing the forma- tion of cracks. The dependence of the average rod spacing (λav) on the scanning rate (V) follows a relation with λavV0.5 = 1 μm1.5 s^-0.5. Typical eutectic microstructures, so-called complex regular, were analyzed with respect to its evolution with modulating the growth conditions. Formation mechanism of the solidifi- cation defect, shrinkage porosity, was discussed and the defect is found to be significantly suppressed by optimizing the solidification parameters. The maximum hardness and fracture toughness are mea- sured to he 16.7 GPa and 4.5 MPa m1/2, respectively. The interplay between the propagation of cracks and the Al2O3/ZrO2 interface is discussed.
文摘The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.
基金financially supported by the Innovation Research Team Program of the Ministry of Education(IRT0713)the Key Laboratory of New Materials in Automobile of Liaoning Province(grant No.201016201)Doctoral Initiating Project of Liaoning Province Foundation for Natural Sciences,China
文摘In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F), centrifugal acceleration (v) and sintering temperature (T), while the only output was the ultimate compressive strength ((7). According to the registered BP model, the effects of F, v, T on 0 were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.
基金supported by the National Natural Science Foundation of China (50672014)Innovation Research Team Program of the Ministry of Education (IRT0713)
文摘The aim of the present research is to provide a technique for preparing open-cell Al2O3-ZrO2 ceramic foams with uniform cell size.This technique used plant seeds to array templates and centrifugal slip casting to obtain cell struts with high packing density.Aqueous Al2O3-ZrO2 slurries with up to 50 vol.% solid contents were prepared and the rheological characteristic of the slurries was investigated.Consolidation was performed at an acceleration of 2,860 g for 60 min.The effect of the characteristic of plant seeds on the drying behavior of Al2O3-ZrO2 green compact was analyzed.The effects of the solid contents of slurries on segregation phenomena of Al2O3 and ZrO2 particles and green compact uniformity were investigated.The compressive stress-strain curve and deformation behavior of Al2O3-ZrO2 ceramic foams prepared using plant seed template were analyzed.The results showed segregation phenomenon is negligible for highly stable slurry with 50 vol.% solid loading.The prepared cell struts of Al2O3-ZrO2 foams have high green density (61.9% TD), sintered density (99.1% TD) and homogeneous microstructure.When sintered at 1,550 ℃ for 2 h, the cell size of Al2O3-ZrO2 foam is approximately uniform and the diameter is about 1.1 mm.The porosity and compressive strength of sintered products is 66.2% and 5.86 MPa, respectively.
基金the Ministerial Level Advanced Research Foundation (1040020440703)
文摘Rules and mechanism of damage in Al2O3 coatings irradiated by CO2 CW laser are studied in order to improve the ability of parts of equipment standing against the high power laser. Al2O3 coatings were sprayed by air plasma spray(APS) on the 45^# steel substrate, and then were irradiated by CO2 CW laser from 795 W/cm^2 to 31 830 W/cm^2. As the output power of the laser is increasing, its porosity is increasing and cracks are appearing and spreading quickly, And also the phase will transform from γ-Al2O3 to a-Al2O3 in the damaged areas. When the energy density is 17 507 W/cm^2, the coatings are destroyed completely. The thermal infection field on substrate is rather small. The laser energy is depleted by the phase transformation and cracks in Al2O3 coatings during the laser thermal shock.
基金financially supported by the National Natural Science Foundation of China (Nos. 51804252 and 51701156)the Equipment Pre-Research Foundation of China (Nos. 6140759040102 and 6140923040203)the Doctoral Starting Fund of Xi’an University of Technology (No. 101-451116013)
文摘Large size,high-density(99.97%)and well-organized Al2O3/Y3Al5O12(YAG)eutectic ceramics were prepared by the modified Bridgman method.The evolution of the three dimensional microstructure and micropores were investigated.The diameter of the micro-pores and the porosity decreased during directional solidification.The average equivalent diam eter of the micro-pores was 2.41μm in the well-prepared eutectic ceramics.Most of the pores(98.07%)were smaller than 4μm.These data are comparable to those prepared by the optical floating zone method.The as-grown eutectic ceramics were polycrystalline,but the interfaces were well-bonded and there were no amorphous phases in the microstructure.The misfits of the different crystallographic relationships were calculated,and the bottleneck of the single-crystal preparation was identified.These results could provide theoretical guidance for the preparation of large,single-crystal Al2O3/YAG eutectic ceramics by the modified Bridgman method.