The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as ...The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.展开更多
A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
Rapid surface resolidification with a high powered CO2-laser was performed in preparing directionally solidified Al2O3/YAG/ZrO2 ternary eutectic ceramic in situ composite.The effects of laser processing parameters on ...Rapid surface resolidification with a high powered CO2-laser was performed in preparing directionally solidified Al2O3/YAG/ZrO2 ternary eutectic ceramic in situ composite.The effects of laser processing parameters on the solidification microstructure characteristics and thermal properties were studied by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and synthetically thermal analysis(STA).Detailed investigations of the influence of laser power and scanning rate on the preparation and microstructural parameters of the ternary eutectic were presented.Moreover, the eutectic phase separation rule at high temperature was discussed.The results indicate that solidification microstructure of the ternary eutectic composite is greatly influenced by the laser processing parameters.The synthetically thermal analysis shows that the eutectic temperature of ternary Al2O3/YAG/ZrO2 composite is 1 738℃,well matching the phase diagram of Al2O3-Y2O3-ZrO2.展开更多
以纳米ZrO 、微米Al O 为原料,采用无压烧结方式制备了ZTA 复相陶瓷。结果表明:nano-ZrO 的 2 2 3 2加入有利于制备细晶ZTA 复相陶瓷。此外,nano-ZrO 的加入对 Al O 陶瓷的显微结构也产生影响,ZrO ...以纳米ZrO 、微米Al O 为原料,采用无压烧结方式制备了ZTA 复相陶瓷。结果表明:nano-ZrO 的 2 2 3 2加入有利于制备细晶ZTA 复相陶瓷。此外,nano-ZrO 的加入对 Al O 陶瓷的显微结构也产生影响,ZrO 颗粒以 2 2 3 2“晶内型”和晶界型两种形式存在。合理的配方组成及制备工艺有利于 Z r O 以四方亚稳相存在。Z r O 含量为 2 23 0 w t % 时,其四方相含量可达 6 9 %,有利于应力诱导相变增韧,该 Z T A 复相陶瓷的抗弯强度、断裂韧性分别达到 604MPa、6.87MPa·m1/2。展开更多
基金the financial support from the 261Project of MIIT and Natural Science Foundation of Jiangsu Province(No.BK20240179)。
文摘The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.
基金Project(50772090)supported by the National Natural Science Foundation of ChinaProject(04G53048)supported by the Aeronautical Science Foundation of China+4 种基金Project(20040699035)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(W018101)supported by the Foundation Research Fund of Northwestern Polytechnical University,ChinaProject(2007AMM004)supported by the Opening Project of State Key Laboratory for Advanced Metals and Materials,ChinaProject supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,ChinaProject supported by the Scientific Research Start-up Foundation for Outstanding Persons in Northwestern Polytechnical University,China
文摘Rapid surface resolidification with a high powered CO2-laser was performed in preparing directionally solidified Al2O3/YAG/ZrO2 ternary eutectic ceramic in situ composite.The effects of laser processing parameters on the solidification microstructure characteristics and thermal properties were studied by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and synthetically thermal analysis(STA).Detailed investigations of the influence of laser power and scanning rate on the preparation and microstructural parameters of the ternary eutectic were presented.Moreover, the eutectic phase separation rule at high temperature was discussed.The results indicate that solidification microstructure of the ternary eutectic composite is greatly influenced by the laser processing parameters.The synthetically thermal analysis shows that the eutectic temperature of ternary Al2O3/YAG/ZrO2 composite is 1 738℃,well matching the phase diagram of Al2O3-Y2O3-ZrO2.
文摘以纳米ZrO 、微米Al O 为原料,采用无压烧结方式制备了ZTA 复相陶瓷。结果表明:nano-ZrO 的 2 2 3 2加入有利于制备细晶ZTA 复相陶瓷。此外,nano-ZrO 的加入对 Al O 陶瓷的显微结构也产生影响,ZrO 颗粒以 2 2 3 2“晶内型”和晶界型两种形式存在。合理的配方组成及制备工艺有利于 Z r O 以四方亚稳相存在。Z r O 含量为 2 23 0 w t % 时,其四方相含量可达 6 9 %,有利于应力诱导相变增韧,该 Z T A 复相陶瓷的抗弯强度、断裂韧性分别达到 604MPa、6.87MPa·m1/2。