期刊文献+
共找到216,425篇文章
< 1 2 250 >
每页显示 20 50 100
Wearing resistance of in-situ Al-based composites with different SiO_2/C/Al molar ratios fabricated by reaction hot pressing 被引量:1
1
作者 El Oualid MOKHNACHE 王桂松 耿林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期917-923,共7页
The in-situ Al-based composites with different SiO2/C/Al molar ratios were fabricated by reaction hot pressing. The dry sliding wear characteristics of the composites were investigated using a pin-on-disc wear tester.... The in-situ Al-based composites with different SiO2/C/Al molar ratios were fabricated by reaction hot pressing. The dry sliding wear characteristics of the composites were investigated using a pin-on-disc wear tester. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to investigate the surface composition and its morphology. The results show that when the SiO2/C/Al molar ratio is 3:6:9, more in-situ synthesized Al2O3 and SiC along with Si particles are produced, and Al4C3 is prevented completely from the Al?SiO2?C system. Thereby, a significant improvement of wear resistance is obtained. When the sliding velocity increases from 0.4 to 1.6 m/s, the wear loss decreases gradually. With increasing the normal load, the wear loss increases as well. Ploughing, craters and micro-grooving are observed as dominant abrasive wear mechanisms. Whereas, when a high velocity is employed, only the oxidation mechanism controls the wear behavior of the composites. 展开更多
关键词 metal matrix composite wear mechanism FRICTION HARDNESS
在线阅读 下载PDF
Microstructure,mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti_2AlC particulates 被引量:6
2
作者 Jun Cheng Shengyu Zhu +2 位作者 Yuan Yu Jun Yang Weimin Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第4期670-678,共9页
TiAl-based composites reinforced with different high volume fractions of nearly network TizAIC phase have been successfully prepared by mechanical alloying and hot-pressing method.Their microstructure.mechanical and t... TiAl-based composites reinforced with different high volume fractions of nearly network TizAIC phase have been successfully prepared by mechanical alloying and hot-pressing method.Their microstructure.mechanical and tribological properties have been investigated.Ti2AIC network becomes continuous but the network wall grows thicker with increasing the Ti2AIC content.The continuity and wall size of the network Ti2AIC phase exert a significant influence on the mechanical properties.The bending strength of the composites first increases and then decreases with the Ti2A1C content.The compressive strength of the composite decreases slightly compared to the TiAI alloy,but the hardness is enhanced.Due to the high hardness and load-carrying capacity of the network structure,these composites have the better wear resistance.And this enhancement is more notable at low applied loads and high Ti2A1C content.The mechanisms simulating the role of network Ti2AIC phase on the wear behavior and the wear process of TiAl/Ti2AIC composites at different applied loads have been proposed. 展开更多
关键词 TiAl/Ti2AIC composites Network structure Wear resistance
原文传递
ON DISCONTINUOUS REINFORCED NiAl-BASED COMPOSITES
3
作者 CHENG Tianyi (Metal Materials Section, Beijing Institute of Technology, P.O.Box 327, China,International Centre for Materials Physics, Academia Sinica, Shenyang 110015), China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期589-595,共7页
Mechanically alloyed NiAl-TiB_2-Y_2O_3 composite (volume percentage of dispersoids about 15v%) was prepared by hot pressing. The compressive properties of the composite from 300 K to 1360 K were tested and the microst... Mechanically alloyed NiAl-TiB_2-Y_2O_3 composite (volume percentage of dispersoids about 15v%) was prepared by hot pressing. The compressive properties of the composite from 300 K to 1360 K were tested and the microstructures were studied mainly by TEM. The yield strengths of the composite at room temperature and high temperatures are considerably higher than that of monolithic NiAl and also is higher than similar NiAl-based composites which contained higher content of dispersoids but showed coarser microstructure. The possible strengthening mechanisms working in the composite are discussed. 展开更多
关键词 NIAL compositE STRENGTH
在线阅读 下载PDF
Effects of temperature on fracture behavior of Al-based in-situ composites reinforced with Mg_2Si and Si particles fabricated by centrifugal casting 被引量:5
4
作者 李波 王开 +3 位作者 刘明翔 薛寒松 朱子宗 刘昌明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期923-930,共8页
An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on ... An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations. 展开更多
关键词 aluminum based in-situ composites fracture behavior centrifugal casting high temperature
在线阅读 下载PDF
Design and synthesis of KIT-5/Beta composites under varied hydrothermal temperatures and evaluation of their hydrodenitrogenation performance
5
作者 LIU Xing GUO Shaoqing +7 位作者 CUI Haitao LI Zhenrong LI Xin WANG Lei WU Xingjie WANG Xiaoxiao YUAN Lijing ZHAO Liangfu 《燃料化学学报(中英文)》 北大核心 2026年第1期46-57,共12页
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva... KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI). 展开更多
关键词 mesoporous-microporous material KIT-5/Beta composite NiWS QUINOLINE HYDRODENITROGENATION
在线阅读 下载PDF
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
6
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption compositE
在线阅读 下载PDF
Rare Earth Application in Sealing Anodized Al-Based Metal Matrix Composites 被引量:1
7
作者 Xingwen YU, Chunan CAO, Chuanwei YAN and Zhiming YAO State Key Laboratory for Corrosion and Protection, Institute of Corrosion and Protection of Metals, Chinese Academy of Science, Shenyang 110015, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期283-284,共2页
A new method for corrosion protection of Al-based metal matrix composites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance... A new method for corrosion protection of Al-based metal matrix composites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves. The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC. 展开更多
关键词 AL Rare Earth Application in Sealing Anodized al-based Metal Matrix composites SiC
在线阅读 下载PDF
Structure and Mechanical Properties of Al-based Gradient Composites Reinforced with Primary Si and Mg_2Si Particles through Centrifugal Casting 被引量:3
8
作者 翟彦博 MA Xiuteng MEI Zhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期813-818,共6页
The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were inv... The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction. 展开更多
关键词 gradient composites centrifugal casting primary Si primary Mg2Si
原文传递
Effect of coal-based composite binders on isothermal oxidation kinetics of vanadium–titanium magnetite pellets
9
作者 Yong-kang Zhang Guang-hui Li +4 位作者 Ye-sheng Cheng Jin Zhang Cheng-zhi Wei Xin Zhang Tao Jiang 《Journal of Iron and Steel Research International》 2025年第10期3190-3201,共12页
The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was a... The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder. 展开更多
关键词 Coal-based composite binder Vanadium-titanium magnetite PELLET Isothermal oxidation kinetics
原文传递
Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor 被引量:6
10
作者 Ya-Nan Zhang Chen-Yang Su +2 位作者 Jun-Lei Chen Wen-Huan Huang Rui Lou 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期769-796,共28页
Supercapacitors(SCs)have been considered as the most promising energy storage device due to high power density,long cycle life,and fast energy storage and efficient delivery.The excellent electrode materials of SCs ge... Supercapacitors(SCs)have been considered as the most promising energy storage device due to high power density,long cycle life,and fast energy storage and efficient delivery.The excellent electrode materials of SCs generally have based on large porous structure,excellent conductivity,and heteroatom doping for charge transfer.Among various electrode materials,biomass-derived carbon materials have received widespread attention owing to excellent performances,environmental friendliness,lowcost and renewability.Additionally,composites materials based on biomass-derived carbon and transition metalbased material can obtain more advantages of structural and performance than single component,which opens up a new way for the fabrication of high-performance SC electrode materials.Therefore,this review aims to the recent progress on the design and fabrication of biomassderived carbons/transition metal-based composites in supercapacitor application.Finally,the development trends and challenges of biomass-derived electrode materials have been discussed and prospected. 展开更多
关键词 Biomass-derived carbon Transition metal composites Supercapacitor(SC) ELECTROCHEMICAL
原文传递
Exploration of Al-based matrix composites reinforced by hierarchically spherical agents 被引量:1
11
作者 Li Zhang Bao-lin Wu +1 位作者 Yu-hua Zhao Xing-hao Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期796-801,共6页
Al-based composites reinforced with A1-Ti intermetallic compounds/Ti metal hierarchically spherical agents were successfully fabricated by powder metallurgy. This kind of structure produces strongly bonded interfaces ... Al-based composites reinforced with A1-Ti intermetallic compounds/Ti metal hierarchically spherical agents were successfully fabricated by powder metallurgy. This kind of structure produces strongly bonded interfaces as well as soft/hard/soft transition regions between the matrix and reinforced agents, which are beneficial to load transfer during deformation. As expected, the resultant composites exhibit promising mechanical properties at ambient temperature. The underlying mechanism was also discussed in this paper. 展开更多
关键词 metallic matrix composites REINFORCEMENT INTERMETALLICS aluminum titanium powder metallurgy mi-crostructure mechanical properties
在线阅读 下载PDF
Investigation of Al-based Alloys for Brazing SiC_p/Al Composites
12
作者 Wu Mao1,2, Chang Lingling2, Peng Zirong2, Feng Zelong2, Yong Weina2, Wang Wei2, He Xinbo1,2, Qu Xuanhui1,2 1State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing 100083, China 2 Beijing Key Laboratory for Powder Metallurgy and Particulate Materials, University of Science and Technology Beijing, Beijing 100083, China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S3期132-135,共4页
The brazing of SiCp/Al composites is limited owing to the unavailability of suitable commercial intermediate temperature brazes. Adding a third constituent of copper to aluminum-silicon brazing alloy can depress the m... The brazing of SiCp/Al composites is limited owing to the unavailability of suitable commercial intermediate temperature brazes. Adding a third constituent of copper to aluminum-silicon brazing alloy can depress the melting point sharply. While, it generates a large volume fraction of the hard Al2Cu intermetallic compounds (IMCs), which makes the alloy brittle and reduces its corrosion resistance. A quaternary addition of nickel that partly substitute for copper can refine grain size significantly, improve the mechanical properties, and without altering the melting range of aluminum-silicon-copper alloy. Al-Cu-Ni-Si braze alloy has been prepared and a fluxless process has been employed to braze SiCp/Al composites that leads to a good bonding strength of brazing joint. 展开更多
关键词 SICP/AL composites al-based brazes BRAZING INTERMETALLIC COMPOUNDS (IMCs)
原文传递
In-situ synthesis of Al_3Ti particles reinforced Al-based composite coating
13
作者 牛立斌 张菊梅 杨小兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1387-1392,共6页
Using titanium wires (99.5%, 200 μm in diameter) as a reactive source, an Al-based composite coating reinforced by titanium tri-aluminide (A13Ti) particles was fabricated by infiltration plus in-situ methods. Acc... Using titanium wires (99.5%, 200 μm in diameter) as a reactive source, an Al-based composite coating reinforced by titanium tri-aluminide (A13Ti) particles was fabricated by infiltration plus in-situ methods. According to the differential thermal analysis (DTA) curve, the reactive temperature between Ti wires and A1 matrix can be determined at 890 ℃. The obtained composite coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness and wear test. The experimental results show that when holding period is 20 min at 890℃, the titanium wires react completely to in-situ synthesize Al3Ti particles, which presents blocky and strip-like states. The microhardness of in-situ synthesized Al3Ti particles is about 4.5 times that of the Al-matrix. Under the condition of dry sliding at 10 N load, compared with the unreinforced Al matrix, the composite coating fabricated with 20 min offers unique wear resistance behavior, and its wear mechanism is that the adhesive wear and abrasive wear coexist. 展开更多
关键词 INTERMETALLICS in-situ reaction composite coating wear resistance
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
14
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core–shell-structured Ti/Al3Ti 被引量:3
15
作者 Li Zhang Bao-lin Wu Yu-lin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1431-1437,共7页
An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate ... An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core–shell-structured reinforcement, which is mainly composed of Al_3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al_3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al–Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process. 展开更多
关键词 microstructure aluminum-based composites Ti/Al3Ti REINFORCEMENTS mechanical properties
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
16
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Femtosecond laser rotary drilling for SiC_(f)/SiC composites 被引量:3
17
作者 Feng YANG Zhigang DONG +3 位作者 Renke KANG Hongbin MA Guangyi MA Yan BAO 《Chinese Journal of Aeronautics》 2025年第2期478-490,共13页
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali... SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times. 展开更多
关键词 Ceramic matrix composites Femtosecond lasers DRILLING HIGH-QUALITY Film cooling holes
原文传递
Crack-Net:A Deep Learning Approach to Predict Crack Propagation and Stress–Strain Curves in Particulate Composites 被引量:2
18
作者 Hao Xu Wei Fan +3 位作者 Lecheng Ruan Rundong Shi Ambrose C.Taylor Dongxiao Zhang 《Engineering》 2025年第6期149-163,共15页
Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evo... Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design. 展开更多
关键词 Fracture of composites Crack evolution Deep learning Modeling
在线阅读 下载PDF
Construction of iron manganese metal-organic framework-derived manganese ferrite/carbon-modified graphene composites toward broadband and efficient electromagnetic dissipation 被引量:2
19
作者 Baohua Liu Shuai Liu +1 位作者 Zaigang Luo Ruiwen Shu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期546-555,共10页
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ... The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs. 展开更多
关键词 metal-organic frameworks GRAPHENE magnetic composites morphology regulation electromagnetic dissipation
在线阅读 下载PDF
Liquid metal composites:Recent advances and applications 被引量:1
20
作者 Chunghyeon Choi Liyang Liu Byungil Hwang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1008-1024,共17页
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ... Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development. 展开更多
关键词 composites liquid metal POLYMER APPLICATIONS ALLOYS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部