In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagul...In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral p H. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at p H 5. At p H 5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation.Meanwhile, at p H 7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH〉 COO-〉NH deformation of amide Ⅱ〉 aliphatic hydroxyl C/OH at p H 5, and COO-〉aliphatic hydroxyl C/OH at p H 7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.展开更多
基金supported by the National Key Technology Support Program(No.2014BAC13B06)the National Natural Science Foundation of China(Nos.51378414,51178376)+1 种基金the Program for Innovative Research Team in Shaanxi(No.2013KCT-13)the Program for New Century Excellent Talents in the University of Ministry of Education of China(No.NCET-12-1043)
文摘In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral p H. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at p H 5. At p H 5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation.Meanwhile, at p H 7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH)3. Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH〉 COO-〉NH deformation of amide Ⅱ〉 aliphatic hydroxyl C/OH at p H 5, and COO-〉aliphatic hydroxyl C/OH at p H 7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants.