Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for ...Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for 1 hour. The green density, % porosity, % spring back and hardness of the green compacts were determined. Scanning Electron Microscopy was carried out to observe the morphology of pores and alumina particles in green and sintered compacts. The present study indicates that, densification of the compact increases with increasing compacting pressure and decreases with increasing alumina content. Maximum density achieved is 93% for pure aluminium compacts and decreases to 85% for Al-20 wt% alumina compacts. Grain growth of aluminium particles is noticed in the compacts after sintering at 773 and 873 K. Dispersion of fine alumina particle in the aluminium matrix occurs predominantly in the compact when sintered at 773 K which results in increase in hardness value.展开更多
用Al和Al_2O_3双靶磁控共溅射工艺在抛光铝合金衬底上制备了Al-Al_2O_3复合涂层,同时制备纯Al涂层作对比。利用X射线衍射仪和场发射扫描电镜研究了Al-Al_2O_3复合涂层的微观结构和形貌,通过划痕实验和电化学腐蚀实验对复合涂层的膜基结...用Al和Al_2O_3双靶磁控共溅射工艺在抛光铝合金衬底上制备了Al-Al_2O_3复合涂层,同时制备纯Al涂层作对比。利用X射线衍射仪和场发射扫描电镜研究了Al-Al_2O_3复合涂层的微观结构和形貌,通过划痕实验和电化学腐蚀实验对复合涂层的膜基结合力和耐腐蚀性能进行了测试。结果表明,Al-Al_2O_3复合涂层呈较强的Al(111)择优取向,Al_2O_3相以非晶形式存在。直流功率PDC恒定时,射频功率PRF增大,复合涂层中Al相晶粒更加细化,涂层的平整度和致密度明显提高。Al-Al_2O_3复合涂层与铝合金衬底的结合力良好,可达到43 N。相比纯Al涂层,Al-Al_2O_3复合涂层具有优异的耐腐蚀性,其中PRF=150 W的复合涂层的耐腐蚀性能最佳,腐蚀电流密度为0.0016 m A/cm^2,该值相比纯Al涂层降低了一个量级。展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
In this study ball milling of Al356 and Al2O3 powder mixture was carried out in order to produce Al356-Al2O3 nano-composite containing 20 vol.% Al2O3. The structural evolution and morphological changes of powder parti...In this study ball milling of Al356 and Al2O3 powder mixture was carried out in order to produce Al356-Al2O3 nano-composite containing 20 vol.% Al2O3. The structural evolution and morphological changes of powder particles during ball milling were studied by X-ray diffractometery and scanning electron microscopy analysis. As a result of ball milling Al2O3 particles were uniformly dispersed in Al356 matrix. Furthermore the crystallite size of the Al356 decreased to 25 nm after ball milling for 10 h. Morphological studies of powder particles indicated that the powder particle size continuously decreases with increasing milling time. Hardness and elastic modulus values of powder particles were measured by nanoindentation method. It was found that the hardness and elastic modulus of Al356-20 vol.% Al2O3 nanocomposite were about 216 Hv and 86 GPa, respectively which is higher than 75 Hv and 74 GPa for as-received Al356.展开更多
The burnable poison Gadolinium oxide was incorporated into UO<sub>2</sub> in two of the 36 elements of the fuel assembly in the reload fuel of BWR Units I & II of Tarapur Atomic Power Station. This ena...The burnable poison Gadolinium oxide was incorporated into UO<sub>2</sub> in two of the 36 elements of the fuel assembly in the reload fuel of BWR Units I & II of Tarapur Atomic Power Station. This enabled loading of higher quantities of fuel and achieving a more flattened neutron flux distribution over a longer period of time in the nuclear reactor core. The UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> pellets are made by powder pressing and sintering. In the early days of this author’s experience of the 1970s, the processing of UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> turned out to be more complex than that of UO<sub>2</sub> alone. The small proportion of Gd<sub>2</sub>O<sub>3</sub> in the powder mixture (1.5%) is to be uniformly distributed in the UO<sub>2</sub> before and after sintering and substitutional solid solution formation must be complete prior to densification. The inadequacy of homogeneity in the powder and pressed pellets leads to severe defects in the sintering process. In this paper, the processing of U<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> has been revisited. The defects in the product such as “free gadolinia”, low sintered density and bloating, caused by improper processing, have been brought out. The structural defect chemistry aspects of UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> and diffusion processes relevant to sintering have also been discussed.展开更多
文摘Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for 1 hour. The green density, % porosity, % spring back and hardness of the green compacts were determined. Scanning Electron Microscopy was carried out to observe the morphology of pores and alumina particles in green and sintered compacts. The present study indicates that, densification of the compact increases with increasing compacting pressure and decreases with increasing alumina content. Maximum density achieved is 93% for pure aluminium compacts and decreases to 85% for Al-20 wt% alumina compacts. Grain growth of aluminium particles is noticed in the compacts after sintering at 773 and 873 K. Dispersion of fine alumina particle in the aluminium matrix occurs predominantly in the compact when sintered at 773 K which results in increase in hardness value.
文摘用Al和Al_2O_3双靶磁控共溅射工艺在抛光铝合金衬底上制备了Al-Al_2O_3复合涂层,同时制备纯Al涂层作对比。利用X射线衍射仪和场发射扫描电镜研究了Al-Al_2O_3复合涂层的微观结构和形貌,通过划痕实验和电化学腐蚀实验对复合涂层的膜基结合力和耐腐蚀性能进行了测试。结果表明,Al-Al_2O_3复合涂层呈较强的Al(111)择优取向,Al_2O_3相以非晶形式存在。直流功率PDC恒定时,射频功率PRF增大,复合涂层中Al相晶粒更加细化,涂层的平整度和致密度明显提高。Al-Al_2O_3复合涂层与铝合金衬底的结合力良好,可达到43 N。相比纯Al涂层,Al-Al_2O_3复合涂层具有优异的耐腐蚀性,其中PRF=150 W的复合涂层的耐腐蚀性能最佳,腐蚀电流密度为0.0016 m A/cm^2,该值相比纯Al涂层降低了一个量级。
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
文摘In this study ball milling of Al356 and Al2O3 powder mixture was carried out in order to produce Al356-Al2O3 nano-composite containing 20 vol.% Al2O3. The structural evolution and morphological changes of powder particles during ball milling were studied by X-ray diffractometery and scanning electron microscopy analysis. As a result of ball milling Al2O3 particles were uniformly dispersed in Al356 matrix. Furthermore the crystallite size of the Al356 decreased to 25 nm after ball milling for 10 h. Morphological studies of powder particles indicated that the powder particle size continuously decreases with increasing milling time. Hardness and elastic modulus values of powder particles were measured by nanoindentation method. It was found that the hardness and elastic modulus of Al356-20 vol.% Al2O3 nanocomposite were about 216 Hv and 86 GPa, respectively which is higher than 75 Hv and 74 GPa for as-received Al356.
文摘The burnable poison Gadolinium oxide was incorporated into UO<sub>2</sub> in two of the 36 elements of the fuel assembly in the reload fuel of BWR Units I & II of Tarapur Atomic Power Station. This enabled loading of higher quantities of fuel and achieving a more flattened neutron flux distribution over a longer period of time in the nuclear reactor core. The UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> pellets are made by powder pressing and sintering. In the early days of this author’s experience of the 1970s, the processing of UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> turned out to be more complex than that of UO<sub>2</sub> alone. The small proportion of Gd<sub>2</sub>O<sub>3</sub> in the powder mixture (1.5%) is to be uniformly distributed in the UO<sub>2</sub> before and after sintering and substitutional solid solution formation must be complete prior to densification. The inadequacy of homogeneity in the powder and pressed pellets leads to severe defects in the sintering process. In this paper, the processing of U<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> has been revisited. The defects in the product such as “free gadolinia”, low sintered density and bloating, caused by improper processing, have been brought out. The structural defect chemistry aspects of UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> and diffusion processes relevant to sintering have also been discussed.