The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu s...The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.展开更多
The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstru...The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.展开更多
选择Al Sn Si Cu Mg合金作为研究对象,采用Leica光学显微镜、EPM810Q电子显微镜等手段观察分析Cu、Mg、Sn、Si形态分布规律,进而研究了加工工艺对合金组织性能的影响,同时提出高温短时退火制度,最终确定预处理工艺和退火制度,发现通过...选择Al Sn Si Cu Mg合金作为研究对象,采用Leica光学显微镜、EPM810Q电子显微镜等手段观察分析Cu、Mg、Sn、Si形态分布规律,进而研究了加工工艺对合金组织性能的影响,同时提出高温短时退火制度,最终确定预处理工艺和退火制度,发现通过加工和热处理,可消除合金中Sn、Si晶间网状分布,从而改善合金的加工性能。展开更多
基金supported by the National Natural Science Foundation of China (Nos. U0734006 and 51171036)
文摘The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.
基金supported by the National Natural Science Foundation of China(Nos.52105330,52175307)the Natural Science Foundation of Shandong Province,China(No.ZR2023JQ021)。
文摘The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.
文摘选择Al Sn Si Cu Mg合金作为研究对象,采用Leica光学显微镜、EPM810Q电子显微镜等手段观察分析Cu、Mg、Sn、Si形态分布规律,进而研究了加工工艺对合金组织性能的影响,同时提出高温短时退火制度,最终确定预处理工艺和退火制度,发现通过加工和热处理,可消除合金中Sn、Si晶间网状分布,从而改善合金的加工性能。