A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the...AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength.展开更多
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre...Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates.展开更多
In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The...In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing.展开更多
The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate wa...The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture.展开更多
Al/steel bimetallic composites were prepared by compound casting,and the effects of the rotating magnetic field on the interfacial microstructure and shear property of bimetallic composite was investigated.The applica...Al/steel bimetallic composites were prepared by compound casting,and the effects of the rotating magnetic field on the interfacial microstructure and shear property of bimetallic composite was investigated.The application of rotating magnetic field refined the grain structure of the Al alloy matrix,changed the eutectic Si morphology from coarse lath to needle-like.The rotating magnetic field improved the temperature field and solute distribution of the Al alloy melt,enriched a layer of Si at the interface,and suppressed the growth of intermetallic compounds,the thickness of the interface layer decreased from 44.9μm to 22.8μm.The interfacial intermetallic compounds consisted ofη-Al_(5)Fe_(2),θ-Al_(13)Fe_(4),τ6-Al_(4.5)FeSi,τ_(5)-Al_(8)Fe_(2)Si andτ_(3)-Al_(2)FeSi,and the addition of the rotating magnetic field did not change phase composition.The rotating magnetic field improved the stress distribution within the interfacial intermetallic compounds,the presence of high-angle grain boundaries retarded crack extension,and the shear strength was enhanced from 31.27±3 MPa to 52.70±4 MPa.This work provides a feasible method for preparing Al/steel bimetallic composite with good bonding property.展开更多
Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in...Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.展开更多
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted...The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.展开更多
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ...50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.展开更多
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr...Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.展开更多
Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were...Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.展开更多
The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were ana...The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Grain size of the composites prepared by two-stage solution is smaller than that by single-stage solution. After single-stage solution aging treatment, fine precipitates of both η and AlZnMgCu-rich phase can be found both intragranularly and intergranularly. While after the two-stage solution, an amorphous Si-Cu-Al-O (5 nm) layer appears at the interface. The addition of Ni and Zr modified the influence of the two-stage solution and inhibited the growth of the 7090/SiCp composite grain size. Heat treatments can significantly improve the fracture toughness of the composite. The fracture toughness first decreases then increases with the elongation of the aging time.展开更多
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditio...Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.展开更多
The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), sc...The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties testing. The results show that phases of BnC/2024Al composites include B4C, Al, Al3BC, AlB2 and Al2Cu. The phase species remain unchanged; however, the phase content of the composites changes significantly after heat treatment at the temperature of 660, 700, 800 or 900 ℃ for 12, 24 or 36 h. It is found that the heat treatment results in not only considerable enhancement in hardness, but also reduction in bending strength of the composites. Heat treatment at 800 ℃ for 36 h does best to hardness of the composites, while at 700 ℃ for 36 h it is the most beneficial to their comprehensive mechanical properties.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w...The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.展开更多
Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, ...Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).展开更多
Cu/Al composite plates were fabricated using rolling and underwater explosive welding techniques,separately,to compare their interfacial microstructures and mechanical performance.Interface morphology,grain orientatio...Cu/Al composite plates were fabricated using rolling and underwater explosive welding techniques,separately,to compare their interfacial microstructures and mechanical performance.Interface morphology,grain orientation,grain boundary characteristics,and phase distribution were analyzed through optical microscope,scanning electron microscope,and electron backscattered diffractometer.Mechanical properties were assessed using tensile shear tests,90°bending tests,and hardness measurements.Vickers hardness and nanoindentation test results further provided information on the hardness distributions.Results indicate that the diffusion layer in rolled Cu/Al composites is relatively fragile,while that produced by underwater explosive welding features a diffusion layer of approximately 18μm in thickness,which is metallurgically bonded through atomic diffusion.The tensile shear strength of these composites ranges from 64.45 MPa to 70.84 MPa,and in the 90°three-point bending test,the underwater-explosive-welded samples exhibit superior flexural performance.This study elucidates the effects of different manufacturing methods on the interfacial properties and mechanical performance of Cu/Al composites,offering essential insights for the selection of manufacturing methods and applications.展开更多
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金National Natural Science Foundation of China(52275308,52301146)Fundamental Research Funds for the Central Universities(2023JG007)Supported by Shi Changxu Innovation Center for Advanced Materials(SCXKFJJ202207)。
文摘AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength.
基金supported by National Key Research and Development Program(2018YFA0707300)Major Program of National Natural Science Foundation of China(U22A20188).
文摘Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates.
基金supported by the National Key Research and Development Program of China(2022YFB3708400)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)+4 种基金the Youth Talent Support Programme of Guangdong Provincial Association for Science and Technology(SKXRC202301)the Guangdong Academy of Science Fund(2020GDASYL-20200101001,2023GDASQNRC-0210,2023GDASQNRC-0321)the Guangdong Science and Technology plan project(2023A0505030002)the GINM’Special Project of Science and Technology Development(2023GINMZX-202301020108)Evaluation Project of Guangdong Provincial Key Laboratory(2023B1212060043).
文摘In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing.
基金Supported by Science Research Project of Hebei Education Department(Grant No.BJK2024138)Hebei Provincial Natural Science Foundation(Grant No.E2023203129)National Natural Science Foundation of China(Grant Nos.52004242,52075472).
文摘The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture.
基金supported by the Natural Science Foundation of Shanxi Province(202103021224193).
文摘Al/steel bimetallic composites were prepared by compound casting,and the effects of the rotating magnetic field on the interfacial microstructure and shear property of bimetallic composite was investigated.The application of rotating magnetic field refined the grain structure of the Al alloy matrix,changed the eutectic Si morphology from coarse lath to needle-like.The rotating magnetic field improved the temperature field and solute distribution of the Al alloy melt,enriched a layer of Si at the interface,and suppressed the growth of intermetallic compounds,the thickness of the interface layer decreased from 44.9μm to 22.8μm.The interfacial intermetallic compounds consisted ofη-Al_(5)Fe_(2),θ-Al_(13)Fe_(4),τ6-Al_(4.5)FeSi,τ_(5)-Al_(8)Fe_(2)Si andτ_(3)-Al_(2)FeSi,and the addition of the rotating magnetic field did not change phase composition.The rotating magnetic field improved the stress distribution within the interfacial intermetallic compounds,the presence of high-angle grain boundaries retarded crack extension,and the shear strength was enhanced from 31.27±3 MPa to 52.70±4 MPa.This work provides a feasible method for preparing Al/steel bimetallic composite with good bonding property.
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(SKLSP201103)supported by the Fund of the State Key Laboratory of Solidification ProcessingProject(B08040)supported by the Introducing Talents of Discipline toUniversities,China
文摘Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.
基金Projects(50971038,51174058)supported by the National Natural Science Foundation of China
文摘The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.
基金Project (AWJ-M13-15) supported by the Open Fund of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.
基金supported by the National Natural Science Foundation of China (21377169, 21507168)the Fundamental Research Funds for the Central Universities (CZW15078)the Natural Science Foundation of Hubei Province of China (2014CFC1119, 2015CFB505)~~
文摘Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.
基金Project(2012MS0801)supported by the Natural Science Foundation of Inner Mongolia,China
文摘Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.
基金Project (02Gky2004) supported by Hunan Provincial Science and Technology Department, China
文摘The ultra high strength SiC particles (SiCp) reinforced Al-10%Zn-3.6%Mg-1.8%Cu-0.36%Zr-0.15% Ni composite was prepared by spray co-deposition. Microstructures of the extruded and different heat-treated bars were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Grain size of the composites prepared by two-stage solution is smaller than that by single-stage solution. After single-stage solution aging treatment, fine precipitates of both η and AlZnMgCu-rich phase can be found both intragranularly and intergranularly. While after the two-stage solution, an amorphous Si-Cu-Al-O (5 nm) layer appears at the interface. The addition of Ni and Zr modified the influence of the two-stage solution and inhibited the growth of the 7090/SiCp composite grain size. Heat treatments can significantly improve the fracture toughness of the composite. The fracture toughness first decreases then increases with the elongation of the aging time.
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.
基金Project(2011CB605805)supported by the National Basic Research Program of China
文摘The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties testing. The results show that phases of BnC/2024Al composites include B4C, Al, Al3BC, AlB2 and Al2Cu. The phase species remain unchanged; however, the phase content of the composites changes significantly after heat treatment at the temperature of 660, 700, 800 or 900 ℃ for 12, 24 or 36 h. It is found that the heat treatment results in not only considerable enhancement in hardness, but also reduction in bending strength of the composites. Heat treatment at 800 ℃ for 36 h does best to hardness of the composites, while at 700 ℃ for 36 h it is the most beneficial to their comprehensive mechanical properties.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金supported by the general project of the National Natural Science Foundation of China(No.52071042)Chongqing Natural Science Foundation Project,China(Nos.CSTB2023NSCQ-MSX0079,cstc2021ycjh-bgzxm0148)Graduate Student Innovation Program of Chongqing University of Technology,China(No.gzlcx20232008).
文摘The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.
基金Project (51374039) supported by the National Natural Science Foundation of ChinaProject (613135) supported by National Security Basic Research Program of China
文摘Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).
基金Anhui Province Key Research and Development Plan(2022a05020021)China Coal Science and Industry Group Chongqing Research Institute Independent Research and Development Project(2023YBXM58)。
文摘Cu/Al composite plates were fabricated using rolling and underwater explosive welding techniques,separately,to compare their interfacial microstructures and mechanical performance.Interface morphology,grain orientation,grain boundary characteristics,and phase distribution were analyzed through optical microscope,scanning electron microscope,and electron backscattered diffractometer.Mechanical properties were assessed using tensile shear tests,90°bending tests,and hardness measurements.Vickers hardness and nanoindentation test results further provided information on the hardness distributions.Results indicate that the diffusion layer in rolled Cu/Al composites is relatively fragile,while that produced by underwater explosive welding features a diffusion layer of approximately 18μm in thickness,which is metallurgically bonded through atomic diffusion.The tensile shear strength of these composites ranges from 64.45 MPa to 70.84 MPa,and in the 90°three-point bending test,the underwater-explosive-welded samples exhibit superior flexural performance.This study elucidates the effects of different manufacturing methods on the interfacial properties and mechanical performance of Cu/Al composites,offering essential insights for the selection of manufacturing methods and applications.