In arid and semi-arid zones,water is the most vulnerable resource to climate change.In fact,various techniques such as artificial recharge are adopted to restore aquifers and to ensure aquifer sustainability in relati...In arid and semi-arid zones,water is the most vulnerable resource to climate change.In fact,various techniques such as artificial recharge are adopted to restore aquifers and to ensure aquifer sustainability in relation to the accelerated pace of exploitation.Morocco is a Mediterranean country highly vulnerable to climate change,many of its main aquifers are subjected to excessive drawdowns.This technique is practiced to increase potentiality of these aquifers.In the Northwestern area of Morocco,the significant development experienced by Tangier City in the industrial,tourism,and commercial sectors will lead to increased water requirements-up to 5 067 L/s(159.8 mm^3)by 2030.However,the Charf El Akab aquifer system,subject to artificial recharge,is the only groundwater resource of Tangier region;hence,a rational management context is needed to ensure aquifer sustainability,and optimized exploitation under the background of differing constraints,such as increased water requirements,and climate change impacts.This work aims to respond,for the first time,to the Charf El Akab aquifer overexploitation problem,and to evaluate the future scenarios of its exploitation in the event of failure of one of the superficial resources.This work also presents a synthesized hydrodynamic modeling based on the results of the numerical simulations carried out using Feflow software for 2004(date of cessation of injections)and 2011(date of resumption of these facilities),making it possible to evaluate the impact of the artificial recharge on the piezometric level of the aquifer on a spatiotemporal scale.Finally,the exploitation scenarios have shown that the aquifer of Charf El Akab will not adequatly provide for the region's water requirements on the future horizon,entailing an optimal management of water resources in the region and an intentionally increased recharge rate.展开更多
The Charf El Akab aquifer has a surface area of 17 km2 and is located about 20 km southwest of the Tangier city, it circulates in the Miocene sandy basin of the same name and comprises two layers, one high and the oth...The Charf El Akab aquifer has a surface area of 17 km2 and is located about 20 km southwest of the Tangier city, it circulates in the Miocene sandy basin of the same name and comprises two layers, one high and the other low, these two are separated in some places by an airtight impenetrable sand-marly formation. The requirements for water whether potable or industrial, in the Tangier-Asilah region are expected to amplify in order to support the increasing demand prompted by the economical development, population growth as well as the heightened threat of scarcity related to climate change. Currently, the water supply of this region is ensured mostly by the two dams: Ibn Battouta and “April 9, 1947”. However, this aquifer plays the role of an easily usable emergency reservoir, in case of an extra water supply in rush hour or in the event where current service works of the cities of Tangier and Asilah are unavailable. Nevertheless, water resources are still vulnerable because of the existence of abandoned quarries in the area. Therefore, the protection of this aquifer against any source of pollution is the purpose of this work. The lower water layer is the only one that can be exploited by the ONEE (National Office for Electricity and Drinking Water), due to the fact that it has a better quality and very good hydrodynamic characteristics. The most important thing about this work is the establishment of an intrinsic vulnerability map to the pollution by the DRASTIC method, by exploiting of the calibrated hydrodynamical model results. In the same context of protection, a guesstimate of the close protection perimeter of 72.76 ha was acquired, using a new numerical modeling approach by the “Arcfem” software under the ArcMap environment.展开更多
文摘In arid and semi-arid zones,water is the most vulnerable resource to climate change.In fact,various techniques such as artificial recharge are adopted to restore aquifers and to ensure aquifer sustainability in relation to the accelerated pace of exploitation.Morocco is a Mediterranean country highly vulnerable to climate change,many of its main aquifers are subjected to excessive drawdowns.This technique is practiced to increase potentiality of these aquifers.In the Northwestern area of Morocco,the significant development experienced by Tangier City in the industrial,tourism,and commercial sectors will lead to increased water requirements-up to 5 067 L/s(159.8 mm^3)by 2030.However,the Charf El Akab aquifer system,subject to artificial recharge,is the only groundwater resource of Tangier region;hence,a rational management context is needed to ensure aquifer sustainability,and optimized exploitation under the background of differing constraints,such as increased water requirements,and climate change impacts.This work aims to respond,for the first time,to the Charf El Akab aquifer overexploitation problem,and to evaluate the future scenarios of its exploitation in the event of failure of one of the superficial resources.This work also presents a synthesized hydrodynamic modeling based on the results of the numerical simulations carried out using Feflow software for 2004(date of cessation of injections)and 2011(date of resumption of these facilities),making it possible to evaluate the impact of the artificial recharge on the piezometric level of the aquifer on a spatiotemporal scale.Finally,the exploitation scenarios have shown that the aquifer of Charf El Akab will not adequatly provide for the region's water requirements on the future horizon,entailing an optimal management of water resources in the region and an intentionally increased recharge rate.
文摘The Charf El Akab aquifer has a surface area of 17 km2 and is located about 20 km southwest of the Tangier city, it circulates in the Miocene sandy basin of the same name and comprises two layers, one high and the other low, these two are separated in some places by an airtight impenetrable sand-marly formation. The requirements for water whether potable or industrial, in the Tangier-Asilah region are expected to amplify in order to support the increasing demand prompted by the economical development, population growth as well as the heightened threat of scarcity related to climate change. Currently, the water supply of this region is ensured mostly by the two dams: Ibn Battouta and “April 9, 1947”. However, this aquifer plays the role of an easily usable emergency reservoir, in case of an extra water supply in rush hour or in the event where current service works of the cities of Tangier and Asilah are unavailable. Nevertheless, water resources are still vulnerable because of the existence of abandoned quarries in the area. Therefore, the protection of this aquifer against any source of pollution is the purpose of this work. The lower water layer is the only one that can be exploited by the ONEE (National Office for Electricity and Drinking Water), due to the fact that it has a better quality and very good hydrodynamic characteristics. The most important thing about this work is the establishment of an intrinsic vulnerability map to the pollution by the DRASTIC method, by exploiting of the calibrated hydrodynamical model results. In the same context of protection, a guesstimate of the close protection perimeter of 72.76 ha was acquired, using a new numerical modeling approach by the “Arcfem” software under the ArcMap environment.