During the process of aircraft design, the mathematical model of pilot control behavior characteristics is always used to predict aircraft flying qualities (FQ). This is one of the important methods to avoid pilot-a...During the process of aircraft design, the mathematical model of pilot control behavior characteristics is always used to predict aircraft flying qualities (FQ). This is one of the important methods to avoid pilot-aircraft adverse coupling. In order to study the FQ criterion based on closed-loop pilot-aircraft systems, first, an experimental database is built, which includes 40 aircraft dynamics configurations and the corresponding flight simulation results. Second, the mathematical pilot models with a set of different aircraft configurations are obtained by this experimental database. Then, two FQ criteria, Neal-Smith criterion and Moscow Aviation Institute (MAI) criterion, are analyzed. And the relationship between the FQ level evaluated by actual pilot and the parameters of closed-loop pilot-aircraft systems is studied. Finally, an improved criterion of aircraft FQ is built based on the above two criteria. This new criterion is further used to predict FQ for four new aircraft dynamics configurations, and the prediction results verify its accuracy and practicability.展开更多
With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decision...With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decisionmaking mode which involves the tripartite collaboration among airborne automatic/autonomous system,remote ground-based crews and air traffic control.In this paper,we describe the organizing architecture for commercial remotely piloted aircraft(CRPA)system and its components.Compared with the current operation mode,the new air-ground collaborative decision-making mode has been established with six different situations based on the type of the flight and the condition of the remote pilot.Taking airport surface operation as an experimental example,we model the airport surface operation process and compare the advantages and disadvantages between RPO mode and the current dual-pilot mode from the perspectives of time and operation coverage,and draw conclusions that RPO mode can basically cover the flight operations of the dual-pilot,improve the accuracy of pilot operations and greatly reduce response time by 48%in pre-flight inspection.The above research would be the foundation for the RPO development of commercial aircraft in China.展开更多
An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing ...An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing flight dynamics model, the augmented model involves with more pilot control information in cockpit and is validated against the flight test data. Based on the augmented flight dynamics model, the optimal landing procedure of XV-15 tilt-rotor aircraft after one engine failure is formulated into a Nonlinear Optimal Control Problem(NOCP), solved by collocation and numerical optimization method. The time histories of pilot controls in cockpit during the optimal landing procedure are obtained for the evaluation of pilot workload. An evaluation method which can synthetically quantify the pilot workload in time and frequency domains is proposed with metrics of aggressiveness and cutoff frequencies of pilot controls. The scale of the pilot workload is compared with those of the shipboard landing procedures, bob-up/bob-down and dash/quickstop maneuvers of UH-60 helicopter. The results show that the aggressiveness of pilot collective and longitudinal controls for the tilt-rotor aircraft optimal landing procedure after one engine failure are higher than those for UH-60 helicopter shipboard landing procedures up to the condition of sea state 4, while the pilot cutoff frequency of collective control is lower than that of the bob-up/bob-down maneuver but the pilot cutoff frequency of longitudinal control is higher than that of the dash/quick-stop maneuver. The evaluated pilot workload level is between Cooper–Harper HQR Level 2 and Level 3.展开更多
In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system(EFCS) equipped civil aircraft, digital virtual flight testing and e...In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system(EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method(HQRM)is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model,comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities(HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.展开更多
Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated wi...Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated with unpredictable behavior, potentially leading to loss of the aircraft and life. In this work, the minimum time dynamic optimization problem to LOC is treated using Pontryagin’s Maximum Principle (PMP). The resulting two point boundary value problem is solved using stochastic shooting point methods via a differential evolution scheme (DE). The minimum time until LOC metric is computed for corresponding spatial control limits. Simulations are performed using a linearized longitudinal aircraft model to illustrate the concept.展开更多
基金Aeronautical Science Foundation of China (2006ZA51004)Fanzhou Foundation of China(20100506)
文摘During the process of aircraft design, the mathematical model of pilot control behavior characteristics is always used to predict aircraft flying qualities (FQ). This is one of the important methods to avoid pilot-aircraft adverse coupling. In order to study the FQ criterion based on closed-loop pilot-aircraft systems, first, an experimental database is built, which includes 40 aircraft dynamics configurations and the corresponding flight simulation results. Second, the mathematical pilot models with a set of different aircraft configurations are obtained by this experimental database. Then, two FQ criteria, Neal-Smith criterion and Moscow Aviation Institute (MAI) criterion, are analyzed. And the relationship between the FQ level evaluated by actual pilot and the parameters of closed-loop pilot-aircraft systems is studied. Finally, an improved criterion of aircraft FQ is built based on the above two criteria. This new criterion is further used to predict FQ for four new aircraft dynamics configurations, and the prediction results verify its accuracy and practicability.
基金supported by the National Program on Key Basic Research Project (No. 2014CB744903)the National Natural Science Foundation of China(Nos. 61973212,61673270)+3 种基金the Shanghai Industrial Strengthening Project (No. GYQJ-2017-5-08)the Shanghai Science and Technology Committee Research Project (No. 17DZ1204304)the Civil Aviation Pre-Research ProjectsShanghai Engineering Research Center of Civil Aircraft Flight Testing.
文摘With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decisionmaking mode which involves the tripartite collaboration among airborne automatic/autonomous system,remote ground-based crews and air traffic control.In this paper,we describe the organizing architecture for commercial remotely piloted aircraft(CRPA)system and its components.Compared with the current operation mode,the new air-ground collaborative decision-making mode has been established with six different situations based on the type of the flight and the condition of the remote pilot.Taking airport surface operation as an experimental example,we model the airport surface operation process and compare the advantages and disadvantages between RPO mode and the current dual-pilot mode from the perspectives of time and operation coverage,and draw conclusions that RPO mode can basically cover the flight operations of the dual-pilot,improve the accuracy of pilot operations and greatly reduce response time by 48%in pre-flight inspection.The above research would be the foundation for the RPO development of commercial aircraft in China.
基金supported by the National Natural Science Foundation of China (No. 11672128)
文摘An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing flight dynamics model, the augmented model involves with more pilot control information in cockpit and is validated against the flight test data. Based on the augmented flight dynamics model, the optimal landing procedure of XV-15 tilt-rotor aircraft after one engine failure is formulated into a Nonlinear Optimal Control Problem(NOCP), solved by collocation and numerical optimization method. The time histories of pilot controls in cockpit during the optimal landing procedure are obtained for the evaluation of pilot workload. An evaluation method which can synthetically quantify the pilot workload in time and frequency domains is proposed with metrics of aggressiveness and cutoff frequencies of pilot controls. The scale of the pilot workload is compared with those of the shipboard landing procedures, bob-up/bob-down and dash/quickstop maneuvers of UH-60 helicopter. The results show that the aggressiveness of pilot collective and longitudinal controls for the tilt-rotor aircraft optimal landing procedure after one engine failure are higher than those for UH-60 helicopter shipboard landing procedures up to the condition of sea state 4, while the pilot cutoff frequency of collective control is lower than that of the bob-up/bob-down maneuver but the pilot cutoff frequency of longitudinal control is higher than that of the dash/quick-stop maneuver. The evaluated pilot workload level is between Cooper–Harper HQR Level 2 and Level 3.
基金supported by the National High-tech Research and Development Program of China(No.2014AA110500)
文摘In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system(EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method(HQRM)is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model,comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities(HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.
文摘Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated with unpredictable behavior, potentially leading to loss of the aircraft and life. In this work, the minimum time dynamic optimization problem to LOC is treated using Pontryagin’s Maximum Principle (PMP). The resulting two point boundary value problem is solved using stochastic shooting point methods via a differential evolution scheme (DE). The minimum time until LOC metric is computed for corresponding spatial control limits. Simulations are performed using a linearized longitudinal aircraft model to illustrate the concept.