期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The effect of a closed back cavity on air-coupled piezoelectric micromachined ultrasonic transducer performance
1
作者 Yi Gong Miaojie Liu +4 位作者 Shaobo Gong Quanning Li Xuejiao Chen Wei Pang Menglun Zhang 《Nanotechnology and Precision Engineering》 2025年第3期8-17,共10页
In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve th... In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve the energy utilization efficiency,but this technique is not compatible with state-of-the-art devices such as cantilever-based PMUTs.A closed back cavity provides an alternative method for effectively utilizing the backside acoustic energy.This paper investigates the effects of a closed back cavity on PMUT performance through theoretical analysis,simulations,and experimental verification.Increasing the cavity depth produces a periodic modulation of several key PMUT metrics,such as the relative frequency deviation and quality factor.The optimal cavity depth for PMUTs that ensures a robust resonant frequency and high quality factor is defined as a function of the acoustic wavelength.A closed back cavity also provides an effective method for continuously tuning the quality factor,and thus the bandwidth,of PMUTs.This work paves the way for air-coupled PMUTs with adjustable performance for various applications. 展开更多
关键词 Closed back cavity Cavity resonance air-coupled PMUTs Performance tuning
在线阅读 下载PDF
Enhanced air-coupled impact echo technique by phase analysis of signals from multiple sensors 被引量:1
2
作者 Najjiya Almallah Nenad Gucunski 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期297-310,共14页
This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique ta... This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment. 展开更多
关键词 nondestructive testing(NDT) nondestructive evaluation(NDE) bridge inspection bridge evaluation impact echo bridge delamination concrete bridge deck air-coupled sensing MEMS
在线阅读 下载PDF
Non-contact air-coupled transducers Lamb wave signal multipath effect and blind separation for different modes using PZT as receiver 被引量:1
3
作者 Desheng WU Zhibo YANG +3 位作者 Yu RUAN Wenbo LI Lijuan YANG Xuefeng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期424-434,共11页
Due to the complexity and faintness of the detection wave patterns obtained by aircoupled transducers,if it is possible to effectively separate the various modes and obtain nondispersive signals for more accurate dete... Due to the complexity and faintness of the detection wave patterns obtained by aircoupled transducers,if it is possible to effectively separate the various modes and obtain nondispersive signals for more accurate detection and positioning,it will help to improve the accuracy and reliability of air-coupled ultrasonic Lamb wave detection,providing better technical support for the application and development of related fields.Because of the increased complexity of aircoupled signals,there is no definite theoretical formula to describe the mode changes of aircoupled signals,so the method based on blind separation has unique value.To address these challenges,the paper proposes a single-channel blind source separation(SCBSS)method.The effectiveness of this method is evaluated through simulations and experiments,demonstrating favorable separation results and efficient computational speed.This work first conducts an in-depth analysis of the signal characteristics of air-coupled ultrasonic non-destructive testing,and simulates the ultrasonic excitation conditions of air-coupled sensors through finite element software.The study of modal changes and multipath effects caused by the variation of the incidence angle of the ACT signal is carried out,and the situation of the Lamb wave signal excited by ACT at the receiving end is analyzed.By combining ACT with PZT signals,the ultrasonic signals of air-coupled Lamb waves are compared and studied,and their modal purification is carried out. 展开更多
关键词 air-coupled transducers Lamb wave Mode separation Blind source separation Non-destructive testing
原文传递
Air-coupled piezoelectric micromachined ultrasonic transducers for surface stain detection and imaging
4
作者 Sheng Sun Jianyuan Wang +1 位作者 Yuan Ning Menglun Zhang 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第1期35-42,共8页
This paper proposes an air-coupled piezoelectric micromachined ultrasonic transducer(PMUT)for detection and imaging of surface stains.A 508 kHz PMUT array is designed,fabricated,and characterized in terms of its elect... This paper proposes an air-coupled piezoelectric micromachined ultrasonic transducer(PMUT)for detection and imaging of surface stains.A 508 kHz PMUT array is designed,fabricated,and characterized in terms of its electrical and acoustic properties,and it is used in a pulse echo validation test.Imaging of stains on metal blocks is successfully demonstrated.Compared with existing optical methods for stain detection,the proposed approach can work in a dark environment without color requirements.This work provides a new and promising route for the development of miniaturized stain detection systems. 展开更多
关键词 PMUT air-coupled imaging Stain detection Time of flight
在线阅读 下载PDF
Non-Contact Velocity Measurement of Japanese Cedar Columns Using Air-Coupled Ultrasonics
5
作者 Masumi Hasegawa Misaki Mori Junji Matsumura 《World Journal of Engineering and Technology》 2016年第1期45-50,共6页
The ultrasonic wave velocities of Japanese cedar columns were measured using a non-contact method. An air-coupled ultrasonic wave was propagated through the axial and lateral directions of wood. The velocities in the ... The ultrasonic wave velocities of Japanese cedar columns were measured using a non-contact method. An air-coupled ultrasonic wave was propagated through the axial and lateral directions of wood. The velocities in the axial direction (V<sub>L</sub>) showed the minimum values around the pith. The averaged V<sub>L</sub> increased from 3600 m/s towards the outside of measurement area and attained the maximum values (=4010 m/s). The velocities in the lateral direction (V<sub>RT </sub>) showed no tendency among measurement points. The averaged V<sub>RT </sub> was 1450 m/s. The velocities obtained using the non-contact method showed a significant positive relationship with those obtained using the contact method. The averaged ratio of V<sub>L</sub> to V<sub>RT </sub> was measured to be approximately 2.2 to 2.8. These ratios were in agreement with those from a contact method. These findings suggest that it is possible to measure the velocity in Japanese cedar columns with the non-contact method by using air-coupled ultrasonics. 展开更多
关键词 air-coupled Ultrasonics VELOCITY Non-Contact Method Nodestructive Evaluation Japanese Cedar
在线阅读 下载PDF
Quality evaluation of laser welds based on air-coupled ultrasound 被引量:1
6
作者 Chang Junjie Li Yuanyuan +1 位作者 Tang Yonghui Wu Ruifeng 《China Welding》 CAS 2020年第4期41-47,共7页
With the wide application of laser welding technology in automobiles and rail transportation, the non-destructive testing technology for laser welding seams is also getting better. Aiming at the laser welding seam of ... With the wide application of laser welding technology in automobiles and rail transportation, the non-destructive testing technology for laser welding seams is also getting better. Aiming at the laser welding seam of two-layer metal sheet below 3 mm, the possibility of laser welding seam detection by air-coupling ultrasonic detection technology is discussed. By numerical analysis and experimental analysis,Lamb wave is excited on aluminum plate in air. Through the propagation simulation of Lamb wave in laser weld specimen, the influence of laser weld width and weld quality on reflectivity and transmittance is analyzed. The propagation law of Lamb wave in laser weld specimen is clarified. The results show that the quality of laser weld can be evaluated by the mode of Lamb wave A0. 展开更多
关键词 air-coupling Lamb wave SHEET laser welding
在线阅读 下载PDF
Delamination damage detection of laminated composite beams using air-coupled ultrasonic transducers 被引量:16
7
作者 LIU ZengHua YU HongTao +1 位作者 HE CunFu WU Bin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第7期1269-1279,共11页
Air-coupled ultrasonic transducers are used to generate and receive Lamb waves in quasi-isotropic laminated composite beams for delamination detection. The influence of incident angle on the excited mode is studied. N... Air-coupled ultrasonic transducers are used to generate and receive Lamb waves in quasi-isotropic laminated composite beams for delamination detection. The influence of incident angle on the excited mode is studied. Numerical calculation and experimental results show that a pure Lamb wave mode can be generated if the transmitting transducer is oriented at a specific angle, and the receiving transducer can either be oriented to detect the same mode as that generated by the transmitter or to detect another mode generated by mode conversion at a defect. A three-dimensional finite element model is created to predict the interaction of Lamb waves with delamination, and some unique mechanisms of interaction between A0 mode Lamb waves and delamination are revealed in detail. The experimental results obtained on laminated composite beam using air-coupled ultrasonic transducers are well in accordance with finite element simulation results. Research results show that air-coupled ultrasonic guided waves can be used for delamination damage detection effectively in laminated composite beams. 展开更多
关键词 delamination detection composite beam Lamb wave mode air-coupled ultrasonic transducer three-dimensional finite element simulation
原文传递
Identification of damaged corn seeds using air-coupled ultrasound
8
作者 Jin Yanyun Gao Wanlin +4 位作者 Zhang Han An Dong Guo Sihan Saeed Iftikhar Ahmed Liu Yunling 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第1期63-70,共8页
Corn,an important staple in many countries around the world,is subject to a very inefficient germination rate due to worm-damaged seeds.However,air-coupled ultrasound is a rapid,safe and widely accepted method for the... Corn,an important staple in many countries around the world,is subject to a very inefficient germination rate due to worm-damaged seeds.However,air-coupled ultrasound is a rapid,safe and widely accepted method for the early detection of such damage.In this study,the current effectiveness and future prospects of this technique for identifying damaged seeds were explored.The presented procedure started with drawing a sample of 810 seed particles,consisting of 400 that were intact,400 manually damaged and 10 damaged by worms.Then the principal component analysis(PCA)method was used to reduce the dimensions of air-coupling ultrasonic information and extract the top ten principal components.Finally,a KNN decision tree by using SIMCA software and a Fisher recognition model by using MATLAB software were constructed.The pattern recognition was established by using KNN,which has the most accurate recognition rate.The correct recognition rate of modeling for the front and back data of the intact particles was 98%and 100%,respectively;and for the manually damaged particles,99%and 97%,respectively.The results show that the model developed by using air-coupled ultrasonic data can classify corn seed particles both with and without holes to provide a basis for the development of a seed selection system,which has a significant role in improving the clarity and the germination rate. 展开更多
关键词 damaged corn seed identification air-coupled ultrasonic principal component analysis KNN
原文传递
Performance Boundaries of Air-and Ground-Coupled GPR for Void Detection in Multilayer Reinforced HSR Tunnel Linings:Simulation and Field Validation
9
作者 Yang Lei Bo Jiang +5 位作者 Yucai Zhao Gaofeng Fu Falin Qi Tian Tian Qiankuan Feng Qiming Qu 《Structural Durability & Health Monitoring》 2025年第6期1657-1679,共23页
Detecting internal defects,particularly voids behind linings,is critical for ensuring the structural integrity of aging high-speed rail(HSR)tunnel networks.While ground-penetrating radar(GPR)is widely employed,systema... Detecting internal defects,particularly voids behind linings,is critical for ensuring the structural integrity of aging high-speed rail(HSR)tunnel networks.While ground-penetrating radar(GPR)is widely employed,systematic quantification of performance boundaries for air-coupled(A-CGPR)and ground-coupled(G-CGPR)systems within the complex electromagnetic environment of multilayer reinforced HSR tunnels remains limited.This study establishes physics-based quantitative performance limits for A-CGPR and G-CGPR through rigorously validated GPRMax finite-difference time-domain(FDTD)simulations and comprehensive field validation over a 300 m operational HSR tunnel section.Key performance metrics were quantified as functions of:(a)detection distance(A-CGPR:2.0–4.5 m;G-CGPR:≤0.1 m),(b)antenna frequency(A-CGPR:300 MHz;G-CGPR:400/900 MHz),(c)reinforcement configuration(unreinforced,single-layer,multilayer rebar),and(d)void geometry(axial length:0.1–1.0 m;radial depth:0.1–0.5 m).Key findings demonstrate:a.A-CGPR(300 MHz):Reliably detects axial voids≥0.3 m at distances≤3 m in minimally reinforced(single-layer rebar)linings(field R2=0.89).Performance degrades significantly at distances>3 m(>60%signal attenuation at 4.5 m)or under multilayer rebar interference,causing 25%–40%accuracy loss for voids<0.3 m.Optimal distance:2.0–2.5 m.b.G-CGPR(900 MHz):Achieves<5%size measurement error for axial voids≥0.1 m and radial voids≥0.2 m in unreinforced linings.Resolution degrades under multilayer reinforcement due to severe signal attenuation,increasing axial void detection error to 10%–20%for voids≥0.3 m and constraining radial size measurement.c.Synergistic Framework:A hybrid inspection protocol is proposed,integrating A-CGPR(20 km/h)for rapid large-area screening and targeted G-CGPR(3 km/h)for high-resolution verification of identified anomalies.This framework enhances NDT efficiency while reducing estimated lifecycle inspection costs by 34%compared to G-CGPR alone.This research provides the first physics-derived quantitative detection thresholds for A-CGPR and G-CGPR in multi-rebar HSR tunnels,validated through field-correlated simulations.Future work will focus on multi-frequency antenna arrays and deep learning algorithms to mitigate reinforcement interference.The established performance boundaries and hybrid framework offer critical guidance for optimizing tunnel lining inspection strategies in extensive HSR networks. 展开更多
关键词 High-speed railway tunnel air-coupled GPR ground-coupled GPR lining void detection rebar interference nondestructive testing(NDT) quantitative performance boundaries finite-difference time-domain(FDTD) hybrid inspection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部