Unmanned Aircraft Systems(UASs) have advanced technologically and surged exponentially over recent years. Currently, due to safety concerns, most civil operations of UAS are conducted in low-level uncontrolled area or...Unmanned Aircraft Systems(UASs) have advanced technologically and surged exponentially over recent years. Currently, due to safety concerns, most civil operations of UAS are conducted in low-level uncontrolled area or in segregated controlled airspace. As the industry progresses, both operational and technological capabilities have matured to the point where UASs are expected to gain greater freedom of access to both controlled and uncontrolled airspace. Extensive technical and regulatory surveys have been conducted to enable the expanded operations. However, most surveys are derived from the perspective of UAS own operating mechanism and barely consider interactions of their non-segregated activities with the Air Traffic Management(ATM) system. Hence, to fill the gap, this paper presents a survey conducted from the perspective of Air Navigation Service Provider(ANSP), which serves to accommodate these new entrants to the overall national airspace while continuing flight safety and efficiency. The primary objectives of this paper are to:(A) describe what typical ANSP-supplied UAS Traffic Management(UTM) architecture is required to facilitate all types of civil UAS operations;(B) identify three major ANSP considerations on how UAS can be accommodated safely in civil airspace;(C) outline future directions and challenges related with UAS operations for the ANSP.展开更多
The International Civil Aviation Organization (ICAO) is a specialized agency of the United Nations. Functionally, it has emerged as the organizational necessity of both the universal complex structure and the import...The International Civil Aviation Organization (ICAO) is a specialized agency of the United Nations. Functionally, it has emerged as the organizational necessity of both the universal complex structure and the importance of its overall activity. It was created on the basis of Article 57 of the United Nations Charter, stipulating that the specialized UN agencies are autonomous international organizations. They enjoy their autonomy on the basis of the contract they were established by, being engaged in activities within the United Nations system. On the territories the organization member states comprise, they enjoy privileges and immunities, having the international legal capacity to carry out their activities in accordance to the Statute. The 1944 Multilateral Convention was to establish both protection and efficient development of international civil aviation. In accordance to that rights and obligations of member states were established. It is of a special importance to emphasize obligation of parties to take their parts in both co-operation and programs aimed at improvement of international transport, navigational equipment, and installations. In the globalized world of today, air traffic is an irreplaceable part of the system of communication. It enables fast and timely business contacts between the people from various continents, as well as transport of goods.展开更多
The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level t...The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level to the single epoch level.Current studies primarily focus on finding a conservative Number of Effective Samples(NES)as a risk mapping factor.However,considering that the NES varies with the observation environment and the type of the fault mode,applying a fixed NES can constrain the performance of the algorithm.To address this issue,the continuity and integrity risks over the operational exposure time are analyzed and bounded based on all epochs within the exposure time.A more adaptable method for continuity and integrity budget allocation over the operational exposure time is presented,capable of monitoring the continuity and integrity risks over the recent operational exposure time in real time,and dynamically adjusting the allocation values based on the current observation environment.Simulation results demonstrate that,compared with the allocation method based on a fixed NES,ARAIM based on the proposed allocation method exhibits superior performance in terms of the availability.At an FD execution frequency equal to the required Time-To-Alert(TTA),the dual-constellation H-ARAIM provides 100%of the global coverage with 99.5%availability of the RNP 0.1 service,and the dual-constellation V-ARAIM provides 86.38%of the global coverage with 99.5%availability of the LPV-200 service.展开更多
基金co-supported by the Outstanding Youth Fund of the National Natural Science Foundation of China (No. 61822102)the MIIT Technological Base Program (No. JSZL2016601B003)the National Key Research and Development Program (No. 2018YFB0505105)。
文摘Unmanned Aircraft Systems(UASs) have advanced technologically and surged exponentially over recent years. Currently, due to safety concerns, most civil operations of UAS are conducted in low-level uncontrolled area or in segregated controlled airspace. As the industry progresses, both operational and technological capabilities have matured to the point where UASs are expected to gain greater freedom of access to both controlled and uncontrolled airspace. Extensive technical and regulatory surveys have been conducted to enable the expanded operations. However, most surveys are derived from the perspective of UAS own operating mechanism and barely consider interactions of their non-segregated activities with the Air Traffic Management(ATM) system. Hence, to fill the gap, this paper presents a survey conducted from the perspective of Air Navigation Service Provider(ANSP), which serves to accommodate these new entrants to the overall national airspace while continuing flight safety and efficiency. The primary objectives of this paper are to:(A) describe what typical ANSP-supplied UAS Traffic Management(UTM) architecture is required to facilitate all types of civil UAS operations;(B) identify three major ANSP considerations on how UAS can be accommodated safely in civil airspace;(C) outline future directions and challenges related with UAS operations for the ANSP.
文摘The International Civil Aviation Organization (ICAO) is a specialized agency of the United Nations. Functionally, it has emerged as the organizational necessity of both the universal complex structure and the importance of its overall activity. It was created on the basis of Article 57 of the United Nations Charter, stipulating that the specialized UN agencies are autonomous international organizations. They enjoy their autonomy on the basis of the contract they were established by, being engaged in activities within the United Nations system. On the territories the organization member states comprise, they enjoy privileges and immunities, having the international legal capacity to carry out their activities in accordance to the Statute. The 1944 Multilateral Convention was to establish both protection and efficient development of international civil aviation. In accordance to that rights and obligations of member states were established. It is of a special importance to emphasize obligation of parties to take their parts in both co-operation and programs aimed at improvement of international transport, navigational equipment, and installations. In the globalized world of today, air traffic is an irreplaceable part of the system of communication. It enables fast and timely business contacts between the people from various continents, as well as transport of goods.
基金supported by the National Key Research and Development Program of China(No.2023YFB4302804)the National Natural Science Foundation of China(Nos.U2233217,62371029,62471023,62301016,and 62101015)。
文摘The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level to the single epoch level.Current studies primarily focus on finding a conservative Number of Effective Samples(NES)as a risk mapping factor.However,considering that the NES varies with the observation environment and the type of the fault mode,applying a fixed NES can constrain the performance of the algorithm.To address this issue,the continuity and integrity risks over the operational exposure time are analyzed and bounded based on all epochs within the exposure time.A more adaptable method for continuity and integrity budget allocation over the operational exposure time is presented,capable of monitoring the continuity and integrity risks over the recent operational exposure time in real time,and dynamically adjusting the allocation values based on the current observation environment.Simulation results demonstrate that,compared with the allocation method based on a fixed NES,ARAIM based on the proposed allocation method exhibits superior performance in terms of the availability.At an FD execution frequency equal to the required Time-To-Alert(TTA),the dual-constellation H-ARAIM provides 100%of the global coverage with 99.5%availability of the RNP 0.1 service,and the dual-constellation V-ARAIM provides 86.38%of the global coverage with 99.5%availability of the LPV-200 service.