期刊文献+
共找到2,108篇文章
< 1 2 106 >
每页显示 20 50 100
The Partial Discharge Characteristics of Inner Air Gap Inside High-Voltage Cable Termination for High-Speed Trains
1
作者 Dongli Xin Guangning Wu +5 位作者 Guoqiang Gao Kui Chen Kai Liu Yunlong Xie Mu Lin Bo Li 《High Voltage》 2025年第5期1110-1124,共15页
The air gap at the interface inside the cable terminations for high-speed trains and the partial discharge caused by it are two important factors affecting the insulating performance.The development of air gap and par... The air gap at the interface inside the cable terminations for high-speed trains and the partial discharge caused by it are two important factors affecting the insulating performance.The development of air gap and partial discharge will eventually lead to breakdown faults.To investigate the evolutionary characteristics of the air gap and partial discharge,the simulation models and samples of cable terminations containing defects are constructed in this paper.By analysing the variation law of the electric field and the multidimensional information of partial discharge,the evolution process of the air gap is divided into four wellcharacterised stages.Especially in the third stage,the partial discharge extinction voltage is 51.41%lower than that of the defect-free samples and even lower than the working voltage.The asymmetry of discharge is the most significant factor.The volume of discharge in the third quadrant is significantly higher than that in the first quadrant.This important feature can be applied to the inspection and evaluation of the insulating state of the cable terminations.The partial discharge characteristics of the air gap revealed in this paper are proposed to provide an important theoretical supplement to the study of interface discharges between heterogeneous dielectrics. 展开更多
关键词 simulation models cable terminations partial dischargethe high voltage cable termination breakdown faultsto air gap partial discharge
在线阅读 下载PDF
Dynamic propagation velocity of a positive streamer in a 3 m air gap under lightning impulse voltage
2
作者 李志伟 雷挺 +5 位作者 苏宇 姚修远 杨冰雪 刘德龙 律方成 丁玉剑 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期114-121,共8页
Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning imp... Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed. 展开更多
关键词 lightning impulse 3 m air gap development process streamer velocity
在线阅读 下载PDF
Regulation Method for Torque-Angle Characteristics of Rotary Electric-Mechanical Converter Based on Hybrid Air Gap 被引量:2
3
作者 Bin Meng Yongjiang Lai Xinguo Qiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期100-110,共11页
The torque-angle characteristics of electric-mechanical converters are important determinants of the quality of electrohydraulic proportional control systems.It is far more difficult for a rotary electric-mechanical c... The torque-angle characteristics of electric-mechanical converters are important determinants of the quality of electrohydraulic proportional control systems.It is far more difficult for a rotary electric-mechanical converter(REMC)to obtain flat torque-angle characteristics than traditional proportional solenoid,greatly influencing the promotion and application of rotary valves for electrohydraulic proportional control systems.A simple and feasible regulation method for the torque-angle characteristics of REMCs based on a hybrid air gap is proposed.The regulation is performed by paralleling an additional axial air gap with the original radial air gap to obtain a flat torque-angle characteristic and increase output torque.For comparison,prototypes of REMCs based on hybrid and radial air gaps were manufactured,and a special test rig was built.The torque-angle characteristics under different excitation currents and step responses were studied by magnetic circuit analysis,finite element simulation,and experimental research.The experimental results were consistent with the theoretical analysis.It was shown that REMCs based on a hybrid air gap can obtain a flat torque-angle characteristic with further optimizing of key structural parameters and also increase output torque.This regulation method provides a new approach for the design of proportional rotary electromechanical converters. 展开更多
关键词 Rotary valve Rotary electric-mechanical converter Torque-angle characteristic Hybrid air gap Axial air gap Radial air gap
在线阅读 下载PDF
Review of the Lightning Shielding Against Direct Lightning Strokes Based on Laboratory Long Air Gap Discharges 被引量:27
4
作者 CHEN Weijiang HE Hengxin +5 位作者 QIAN Guanjun CHEN Jiahong HE Junjia Gu Shanqiang XIE Shijun XIANG Nianwen 《中国电机工程学报》 EI CSCD 北大核心 2012年第10期I0001-I0024,1-12,共24页
It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(E... It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(EGM)and the rolling sphere method were developed base on the breakdowncharacteristics of negative long spark discharges,which have been widely used to design the lightning shielding system of transmission lines and structures.In recent years,the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.The impact of upward connecting leader launched from those large-scale facilities on the lightning shielding performance cannot be neglected;otherwise,the validity of the EGM in the lightning shielding design of EHV and UHV transmission lines will be challenged.The research evolutions on the lightning striking distance,the lightning simulation experiments and the positive upward connecting leader process by using laboratory long sparks are reviewed and discussed in this paper. 展开更多
关键词 lightning shielding long air gap discharge lightning striking distance simulation test lightning upward lcader
原文传递
Sensitivity Analysis of Air Gap Motion with Respect to Wind Load and Mooring System for Semi-Submersible Platform Design 被引量:6
5
作者 霍发力 聂焱 +2 位作者 杨德庆 董刚 崔锦 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期535-548,共14页
A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and po... A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuffwork especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design. 展开更多
关键词 mooring system air gap semi-submersible platform radiation damping viscous drag
在线阅读 下载PDF
Impact Analysis of Air Gap Motion with Respect to Parameters of Mooring System for Floating Platform 被引量:4
6
作者 SHEN Zhong-xiang HUO Fa-li +1 位作者 NIE Yan LIU Yin-dong 《China Ocean Engineering》 SCIE EI CSCD 2017年第2期141-150,共10页
In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform ba... In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions. 展开更多
关键词 mooring system air gap floating platform
在线阅读 下载PDF
Study on the Relation between the Air Gap Size under Clothing and the Comfort Sensations 被引量:5
7
作者 王云仪 潘金欢 柳素燕 《Journal of Donghua University(English Edition)》 EI CAS 2006年第5期101-107,共7页
Combining two non-contact testing instruments of a three-dimensional body measure system and an infrared camera, the entrapped air gap under clothing and the clothing surface temperature distribution were measured wit... Combining two non-contact testing instruments of a three-dimensional body measure system and an infrared camera, the entrapped air gap under clothing and the clothing surface temperature distribution were measured without interfering the air gap state. It was discussed the effect of different air gap size on subjective clothing sensation. At the same time, taken the subjective sensations of moisture, adhesiveness and mugginess from the lower back as example, the relationship among the subjective evaluation, the air gap size and the clothing surface temperature were analyzed. 展开更多
关键词 air gap CLOTHING comfort sensations threedimensional body measure.
在线阅读 下载PDF
Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps 被引量:2
8
作者 Yu WANG Lu OU +3 位作者 Tianjun SI Yang NI Jianwei XU Xishan WEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第6期108-115,共8页
When a wind turbine is struck by lightning,its blades are usually rotating.The effect of blade rotation on a turbine's ability to trigger a lightning strike is unclear.Therefore,an arching electrode was used in a win... When a wind turbine is struck by lightning,its blades are usually rotating.The effect of blade rotation on a turbine's ability to trigger a lightning strike is unclear.Therefore,an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary.A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50%discharge voltage.Lightning discharge tests of a 1:30 scale wind turbine model with 2,4,and 6 m air gaps were performed and the discharge process was observed.The experimental results demonstrated that when a 2 m air gap was used,the breakdown voltage increased as the blade speed was increased,but when the gap length was 4 m or longer,the trend was reversed and the breakdown voltage decreased.The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region,promotes upward leader development on the blade tip,and decreases the breakdown voltage.Thus,the blade rotation of a wind turbine increases its ability to trigger lightning strikes. 展开更多
关键词 wind turbine ROTATION up-and-down method breakdown characteristic large-scale air gap
在线阅读 下载PDF
Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge 被引量:1
9
作者 陈赦 曾嵘 +2 位作者 庄池杰 周旋 丁玉剑 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第3期305-310,共6页
One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-st... One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in: the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment. 展开更多
关键词 ultra high voltage long air gap discharge STREAMER LEADER RESTRIKE
在线阅读 下载PDF
Effect of Air Gap under Fabric on Thermal Protective Performance Using an Improved Apparatus 被引量:1
10
作者 李小辉 卢业虎 +2 位作者 周亮 李俊 王云仪 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期595-598,共4页
The bench top test is one of the most important and effective methods to evaluate the total thermal protective performance(TPP) of firefighters' protective clothing,which is greatly influenced by the air gaps entr... The bench top test is one of the most important and effective methods to evaluate the total thermal protective performance(TPP) of firefighters' protective clothing,which is greatly influenced by the air gaps entrapped.In this paper,to investigate the effect of air gap width on TPP,a new improved apparatus with two height changeable buttons to hold the thermal sensor was developed to get a series of air gap sizes from 0 mm to 40 mm.The TPP of two types of flame-resistant outer fabrics was measured with TPP test apparatus respectively.Analysis of temperature rise with each air gap width was made to determine the effects of different air gaps on protective performance.It was indicated that air gap size had great effect on TPP of fabrics in the bench top test.An air gap width above 8 mm was suggested for the thermal protective clothing design. 展开更多
关键词 air gap thermal protective performance(TPP) bench top test firefig hter’s protective clothing
在线阅读 下载PDF
Transmission properties of frequency selective structures with air gaps
11
作者 蒙志君 王立峰 +1 位作者 吕明云 武哲 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期460-465,共6页
The transmission properties of compound frequency selective structures with dielectric slab and air gaps were investigated by computation and experimentation. Mechanism analyses were also carried out. Results show tha... The transmission properties of compound frequency selective structures with dielectric slab and air gaps were investigated by computation and experimentation. Mechanism analyses were also carried out. Results show that the air gaps have a distinct influence on the transmission properties. Resonant frequency of the structure would increase rapidly when the air gap appears. After the gap gets larger to a specific value, generally 1/5 wavelength corresponding to the resonant frequency, the transmission properties would change periodically with the gap thickness. The change of transmission properties in one period has a close relationship with the dielectric thickness. These results provide a new method for designing a bandpass radome of large incidence angle and low loss with the concept of stealth shield radome. 展开更多
关键词 air gap frequency selective structure periodic array RADOME
原文传递
Response of air gap and slamming loadings on semi-submersible platform
12
作者 Zhai Gangjun Ma Zhe Tang Dongyang 《Engineering Sciences》 EI 2013年第6期65-71,共7页
The present research deals with the numerical prediction of the air gap within the 6th generation of deepwater drilling floating semi-submersible platform and the experimental studies on the slamming loadings onto the... The present research deals with the numerical prediction of the air gap within the 6th generation of deepwater drilling floating semi-submersible platform and the experimental studies on the slamming loadings onto the structure. The survivability of the floating model with a mooring system was tested under extreme wave of 10-year return period. In the numerical simulation of the Gaussian method,the narrow band model was applied to obtain the first-order wave surface equation and the modified second-order wave surface equation. The hydrodynamic responses of the floating body,i.e. radiation damping,added mass,second-order wave excitation force and drifting force,were computed by using the potential flow theory based on higher order boundary element method in frequent domain. In the experimental analysis,high-frequency sensors were installed at the lower deck to measure the wave slamming loads. Equivalent truncated mooring system was applied to make sure position of the floating body in the wave tank. The comparison between the numerical and experimental results showed the numerical model underestimated the air gap of the floating body. Nevertheless,the predictions of the high risk spots underneath the floating deck that is prone to wave slamming obtained from both models were agreeable to each other. The experimental results also revealed that the wave slamming events often occurred at the connection point between the rear columns and the lower deck. 展开更多
关键词 SEMI-SUBMERSIBLE air gap slamming loads model experiment
在线阅读 下载PDF
Resistance Characteristics of Arc in Long Air Gap 被引量:3
13
作者 YU Zhanqing YU Junjie +2 位作者 ZENG Rong CHEN He PENG Xiang 《高电压技术》 EI CAS CSCD 北大核心 2013年第8期1881-1885,共5页
Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore... Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore, we constructed an experimental system to study the cha- racteristics of long AC arc in air. Driven by currents of 10 kA or 40 kA (root mean square value), the system produces arcs with different initial lengths of 1 m, 2 m and 4 m, and the movement of the arcs are captured by a high-speed camera. After performing experiments using the system, we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents, as well as a study of the relationship between the macro-morphology and the resistance of the arcs. Conclusions were drawn from the experimental re- sults: the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase. In the end, a formula of arc resistance based on the experiment results is derived. 展开更多
关键词 耐电弧性 电阻特性 空气间隙 实验室测试 电流驱动 实验系统 初始长度 电弧电压
原文传递
Switching Impulse Strength of ±800 kV UHVDC Transmission Line Air Gap Insulation Under High Altitude Condition 被引量:3
14
作者 LIAO Yongli GAO Chao +2 位作者 LI Ruihai WANG Guoli MA Yi 《高电压技术》 EI CAS CSCD 北大核心 2012年第12期3161-3165,共5页
关键词 高压直流输电线路 缺口冲击强度 空气间隙 绝缘特性 开关脉冲 高海拔 伏特 平面布置
原文传递
Air Gap Prediction for Floating Bodies Using a 3D Numerical Wave Tank Approach 被引量:2
15
作者 Shivaji Ganesan T. Debabrata Sen 《Journal of Marine Science and Application》 CSCD 2018年第4期531-549,共19页
Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident ... Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident wave and hydrostatic forces exactly in determining the body response, but the interaction hydrodynamics of radiation and diffraction are based on simplified linearization assumptions. The incident wave can be defined by any suitable wave theory and here defined by a fully nonlinear numerical wave model. After verifying the present computations results in its degenerated linearized version against the usual linear 3D Green function–based frequency-domain results for air gap predictions, systematic comparative studies are undertaken between linear and the approximate nonlinear solutions. It is found that nonlinear computations can yield considerably conservative predictions as compared to fully linear calculations, amounting to a difference of up to 30%–40% in the minimum air gap in steep ambient incident waves at high and moderate frequencies. 展开更多
关键词 3D NUMERICAL WAVE TANK air gap responses TIME-DOMAIN APPROACH NUMERICAL WAVE F–Knonlinear
在线阅读 下载PDF
Experimental Studies on Impulse Flashover Characteristics of Tower Head Air Gaps of±1 000 kV DC Transmission Lines and 被引量:1
16
作者 DING Yujian LIAO Weiming SUN Zhaoying SU Zhiyi 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0010-I0010,共1页
关键词 英文摘要 内容介绍 编辑工作 期刊
原文传递
Numerical Estimation of the Thermal Response of Thermal Protective Clothing-Air Gap-Human Skin Micro-system 被引量:1
17
作者 田明伟 王祯 +5 位作者 刘康炜 胡馨之 朱士凤 曲丽君 陈韶娟 周泉 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期569-573,共5页
Thermal protective clothing has been recognized as the primary shielding against emergency fire hazard and inflammable gas leakage. Therefore,the thermal response of human covered with thermal protective clothing unde... Thermal protective clothing has been recognized as the primary shielding against emergency fire hazard and inflammable gas leakage. Therefore,the thermal response of human covered with thermal protective clothing under high temperature is the key work to investigate the thermal insulation of thermal protective clothing. A coupling model composed of thermal protective clothing,air gap and human skin is established and the temperature of the micro-system is numerically solved via the finite element method( FEM).Especially,the heat transfer of air gap located between clothing and human skin considering conduction and radiation is established while the human skin layers involve the effect of blood perfusion. Then the effect of thermophysical properties( thermal conductivity and volumetric capacity) of fabric and thickness of fabric and air on the thermal response of the micro-system is elucidated and compared.The results indicate that the volumetric heat capacity of fabric is the key parameter to affect the thermal shielding performance of thermal protective clothing,and the thicker fabric thickness and air gap thickness can improve the thermal protective properties of the micro-system. 展开更多
关键词 clothing fabric protective volumetric shielding perfusion insulation conduction elucidated Skin
在线阅读 下载PDF
EXPERIMENTAL INVESTIGATION ON WAVE RUN-UP CHARACTERISTICS ALONG COLUMNS AND AIR GAP RESPONSE OF SEMI-SUBMERSIBLE PLATFORM 被引量:11
18
作者 SHAN Tie-bing YANG Jian-min LI Xin XIAO Long-fei 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第5期625-636,共12页
This article mainly concentrates on a large-volume drilling semi-submersible platform, aiming to reveal wave run-up characteristics along square columns and give the relationship between air gap distributions and wave... This article mainly concentrates on a large-volume drilling semi-submersible platform, aiming to reveal wave run-up characteristics along square columns and give the relationship between air gap distributions and wave parameters. The tests with fixed model were conducted firstly on its encountering a series of monochromatic waves. A wide range of wave slope (H/L ) were selected to investigate the air gap response in detail. As can be seen, larger wave steepness will generally cause smaller air gap in the same wave period, which indicates nonlinear effects of incoming wave can amplify wave elevation. Model tests with mooring condition were also conducted in the same wave conditions. As was expected, the maximum relative wave elevation reduces obviously compared with the fixed one. However, wave shape close to columns show higher harmonic characteristics due to interaction between waves and the columns of semi-submersible platform. Meaningful conclusions from the model tests are drawn in this article, which is helpful in air gap design of floating offshore platform to a certain extent. In addition, the experimental results will provide an important reference for further research on validation and update of theoretical models of air gap. 展开更多
关键词 wave run-up air gap diffraction-radiation effects wave steepness
原文传递
Characteristics of Long Air Gap Discharge Current Subjected to Switching Impulse 被引量:13
19
作者 Yishi Yue Hengxin He +4 位作者 Weijiang Chen Junjia He Chuanqi Wu Xiangen Zhao Feng Huo 《CSEE Journal of Power and Energy Systems》 SCIE 2015年第3期49-58,共10页
Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the correspon... Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the corresponding current signals cover a bandwidth of 0 to more than 20 MHz.Measurement accuracy of the current from the high voltage side is affected by the displacement current and impulse electromagnetic interference.In this paper,a coaxial current sensor with a DC bandwidth of 74.45 MHz is developed.A displacement current-restrained electrode structure is proposed to reduce the equivalent capacitance between the current sensor and the ground over 30 times.Combined with the digital optical fiber synchronous acquisition unit,a current measurement system for long air gap discharge is established.For the purpose of the UHV system’s external insulation optimization design,the discharge current waveform of a 6 m rod-plane air gap under positive switching impulse voltage with 250µs and 1000µs time to crest is obtained.Discharge images and stressed voltage are combined to analyze the continuous feature of a current waveform under critical time to crest impulse and discontinuous feature under long front duration impulse.For the purposes of a lightning protection study,the current waveform of a 10 m rod-plane air gap is subjected to negative switching impulse.Finally,the pulse characteristics of the current corresponding to the single channel and branching stepped negative leader are discussed. 展开更多
关键词 Charge density fluctuation coefficient leader discharge long air gap discharge transient current measurement
原文传递
Experiment on Leader Propagation Characteristics of Air Gaps in UHVDC Transmission Towers Under Positive Switching Impulse Voltages 被引量:12
20
作者 Xuan Zhou She Chen +4 位作者 Hai Wang Rong Zeng Chijie Zhuang Junjie Yu Yujian Ding 《CSEE Journal of Power and Energy Systems》 SCIE 2015年第3期42-48,共7页
Rapid developments in EHV/UHV transmission systems require a deeper understanding of the mechanism of long air gap discharge.Leader propagation is one of the main processes in long gap breakdown.In this paper,the lead... Rapid developments in EHV/UHV transmission systems require a deeper understanding of the mechanism of long air gap discharge.Leader propagation is one of the main processes in long gap breakdown.In this paper,the leader propagation characteristics of real size±800 kV UHVDC transmission tower gaps under positive switching impulse voltages(185/2290μs)are investigated.An integrated observation platform consisting of an impulse voltage divider,a coaxial shunt,a high-speed video camera,and a set of integrated optical electric field sensors(IOES),is established.The waveforms of impulse voltage,discharge current,electric field variation at specific positions,and time-resolved photographs of discharge morphology are recorded.Axial leader velocity and the relationship between leader advancements and injected charge are obtained.The typical value of leader stable propagation velocity is 1.7–2.2 cm/μs,which varies slightly with the gap length and applied voltage amplitude.The leader velocity in the re-illumination process is much higher,and is seen as varying from 5 cm/μs to 30 cm/μs,with an average value around 10 cm/μs.The charge in leader channel per unit length is 20–40μC/m,which illustrates a near-direct proportion relationship between discharge current and leader velocity.The observed parameters are important for further simulation of the tower gap breakdown processes. 展开更多
关键词 Integrated observation platform leader propagation characteristics long air gap discharge positive switching impulses UHVDC transmission tower
原文传递
上一页 1 2 106 下一页 到第
使用帮助 返回顶部