To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental...To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental monitoring data and the macro control principle were employed to configure the upper layer. The lower layer was designed by the application of the thumb rule to a local terrain and specific point sources of pollution therein. The optimized two-level system comprises an upper layer of 16 monitoring stations distributed at places of diverse geographical, ecological, economical and social characteristics, and a lower layer of ]6 sub-machines at each monitoring station of the upper layer. This optimal outcome fits the complicated conditions of the Three Gorges Reservoir area, substantially cuts down the installation cost and the operation cost, and provides accurate monitoring data of atmosphere over the entire area with a high resolution.展开更多
In the current rapid development of China's environmental protection cause, the construction and control work of environmental protection projects in various parts of the country are becoming more and stricter. Th...In the current rapid development of China's environmental protection cause, the construction and control work of environmental protection projects in various parts of the country are becoming more and stricter. Through the air monitoring of environmental protection projects, the actual operation value of environmental protection project construction can be well improved. However, there are still many external influencing factors in the field work of air monitoring, which have a negative impact on the quality of the overall monitoring work. Therefore, it is necessary to actively do a good job in the air monitoring of environmental protection projects. So as to ensure that the results of air monitoring can reflect the actual conditions of the atmosphere in the region, actively carry out the air monitoring and control work of environmental protection projects, enable the air monitoring work to be carried out to the maximum extent, and provide more help for the value of environmental projects. However, in the current air monitoring work of environmental protection projects, there are various problems, which have brought serious adverse effects to the overall air monitoring work of the project. Therefore, it is necessary to pay attention to the attention of relevant quality control staff, and to improve the quality of the air monitoring site of environmental protection projects.展开更多
Trichloroethylene (TCE) is a chlorinated liquid that is commonly used for metal degreasing, household and industrial dry cleaning, and in paints and glues. Tetrachloroethylene, also known as perchloroethylene (PCE), i...Trichloroethylene (TCE) is a chlorinated liquid that is commonly used for metal degreasing, household and industrial dry cleaning, and in paints and glues. Tetrachloroethylene, also known as perchloroethylene (PCE), is an excellent solvent for organic materials. PCE is volatile, highly stable, non-flammable and widely used in dry cleaning. A new method has been developed for measuring TCE and PCE in ambient air in real-time. Based upon the chemical fingerprinting and concentration levels, the method was able to isolate the source of the emissions to the responsible facility. Real-time monitoring was accomplished by utilizing a low pressure chemical ionization source (LPCI) interfaced to a tandem mass spectrometer (TAGA). Monitoring the response of specific parent/daughter ion pairs, the TAGA was used to measure concentrations of TCE and PCE. By optimizing various TAGA parameters, detection limits (DL) as low as 0.5 μg/m3 was achieved for TCE and PCE. Unlike methods using cartridge sampling and GC/MS analysis, this new method provides a real time measurement for a wide range of TCE and PCE concentrations. This unique method was applied in 2000 and 2002 to measure TCE emitted from a manufacturer of stainless steel tubing in Eastern Ontario. The maximum half-hour average concentration of TCE measured downwind of the facility was 1300 μg/m3 and the maximum instantaneous level was measured at 115,000 μg/m3. The information collected by the TAGA unit was used by the Standard Development Branch of Ontario Ministry of the Environment to adopt the half-hour Point of Impingement (POI) standard of TCE to be 36 μg/m3 in 2010. This method successfully identified and simultaneously measured TCE and PCE during a 2011 air monitoring survey of a hazardous waste disposal and treatment facility in Southern Ontario.展开更多
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by...Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data.展开更多
This work aims to provide a methodology framework which allows to improve the performance and efficiency of an air quality monitoring network(AQMN).It requires to be constituted by a minimum and reliable number of mea...This work aims to provide a methodology framework which allows to improve the performance and efficiency of an air quality monitoring network(AQMN).It requires to be constituted by a minimum and reliable number of measurement sites.Nevertheless,the AQMN efficiency should be assessed over time,as a consequence of the possible emergence of new emission sources of air pollutants,which could lead to variations on their spatial distribution within the target area.PM_(10)particles data monitored by the Community of Madrid's(Spain)AQMN between 2008 and 2017 were used to develop a methodology to optimize the AQMN performance.The annual spatial distribution of average PM_(10)levels over the studied period monitored by all current stations vs those more representative was provided by a geographic information system(GIS),and the percentage of similarity between both postulates was quantified using simple linear regression(>95%).As one innovative tool of this study,the practical application of the proposed methodology was validated using PM_(10)particles data measured by AQMN during 2007 and 2018,reaching a similitude degree higher than 95%.The influence of temporal variation on the proposed methodological framework was around 20%.The proposed methodology sets criteria for identifying non-redundant stations within AQMN,it is also able to appropriately assess the representativeness of fixed monitoring sites within an AQMN and it complements the guidelines set by European legislation on air pollutants monitoring at fixed stations,which could help to tackle efforts to improve the air quality management.展开更多
A monitoring campaign of BTEX (benzene, toluene, ethylbenzene, o- m- and p-xylene) was carried out nearby two tunnel portals in the urban area of Naples with the aim to verify air quality in this kind of urban sites...A monitoring campaign of BTEX (benzene, toluene, ethylbenzene, o- m- and p-xylene) was carried out nearby two tunnel portals in the urban area of Naples with the aim to verify air quality in this kind of urban sites. Sampling was carried out using the active adsorption technique. Sampling time was 1 h. Ambient temperature and traffic flow measurements were carried out during each sampling operation. The results indicate that average benzene concentrations at both sites exceed the limit value of 10 μg/Nm^3 established by the European Community (EC) (Dir. 2000/69). Concentration levels of other BTEX are relatively high as well. A correlation between BTEX concentration and two wheeler vehicle flow was observed.展开更多
This paper presents an experimental study on real-time air pollution monitoring using wireless sensors on public transport vehicles.The study is part of the GreenIoT project in Sweden,which utilizes Internet-of-Things...This paper presents an experimental study on real-time air pollution monitoring using wireless sensors on public transport vehicles.The study is part of the GreenIoT project in Sweden,which utilizes Internet-of-Things to measure air pollution level in the city center of Uppsala.Through deploying low-cost wireless sensors,it is possible to obtain more fine-grained and real-time air pollution levels at different locations.The sensors on public transport vehicles complement the readings from stationary sensors and the only ground level monitoring station in Uppsala.The paper describes the deployment of wireless sensors on Uppsala buses and the integration of the mobile sensor network with the GreenIoT testbed.Extensive experiments have been conducted to evaluate the communication quality and data quality of the system.展开更多
This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are syst...This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.展开更多
The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical mode...The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.展开更多
Results of environmental radioactivity monitoring around Qinshan Nuclear Power Plant (QNPP) are reported in this paper. From 1992 to 2005, concentrations of 90Sr, 137Cs and 3H in terrestrial freshwater are (4.4±1...Results of environmental radioactivity monitoring around Qinshan Nuclear Power Plant (QNPP) are reported in this paper. From 1992 to 2005, concentrations of 90Sr, 137Cs and 3H in terrestrial freshwater are (4.4±1.7) mBq·L-1, (0.3±0.1) mBq·L-1 and (1.6±0.5) Bq·L-1, respectively, and (2.8±2.4) Bq·L-1 of 3H in rainwater. Concentrations of 90Sr, 137Cs and 3H in the seawater samples collected from sea area nearby QNPP are (5.4±4.1) mBq·L-1, (0.7±0.2) mBq·L-1 and (1.0±0.5) Bq·L-1, respectively. Concentrations of 90Sr, 137Cs and 3H in the total waste water discharged from NPP-I are (4.0±1.8) m Bq·L-1, (1.0±0.5) mBq·L-1 and (2.8±2.2) Bq·L-1, respectively, and (1.4±0.4) Bq·L-1 of 3H in seawater sampled from No.1 outlet. Atomspheric 3H concentration in 1993~2005 at two monitoring sites is (78.9±96.3) and (64.2±40.2) mBq·m-3, respectively, with an increasing trend after 2003. Atmospheric 14C concentrations at the two sites are in the same levels as the background and data of the reference site.展开更多
In this study, an analysis framework based on the regular monitoring data was proposed for investigating the annual/inter-annual air quality variation and the contributions from different factors(i.e., seasons, pollut...In this study, an analysis framework based on the regular monitoring data was proposed for investigating the annual/inter-annual air quality variation and the contributions from different factors(i.e., seasons, pollution periods and airflow directions), through a case study in Beijing from 2013 to 2016. The results showed that the annual mean concentrations(MC) of PM_(2.5), SO_2, NO_2 and CO had decreased with annual mean ratios of 7.5%, 28.6%, 4.6%and 15.5% from 2013 to 2016, respectively. Among seasons, the MC in winter contributed the largest fractions(25.8%~46.4%) to the annual MC, and the change of MC in summer contributed most to the inter-annual MC variation(IMCV) of PM_(2.5) and NO2. For different pollution periods, gradually increase of frequency of S-1(PM_(2.5), 0~ 75 μg/m^3) made S-1 become the largest contributor(28.8%) to the MC of PM_(2.5) in 2016, it had a negative contribution(-13.1%) to the IMCV of PM_(2.5); obvious decreases of frequencies of heavily polluted and severely polluted dominated(44.7% and 39.5%) the IMCV of PM_(2.5). For different airflow directions, the MC of pollutants under the south airflow had the most significant decrease(22.5%~62.5%), and those decrease contributed most to the IMCV of PM_(2.5)(143.3%),SO2(72.0%), NO_2(55.5%) and CO(190.3%); the west airflow had negative influences to the IMCV of PM_(2.5), NO_2 and CO. The framework is helpful for further analysis and utilization of the large amounts of monitoring data; and the analysis results can provide scientific supports for the formulation or adjustment of further air pollution mitigation policy.展开更多
Prognostics and Health Management(PHM) has become a very important tool in modern commercial aircraft. Considering limited built-in sensing devices on the legacy aircraft model,one of the challenges for airborne syste...Prognostics and Health Management(PHM) has become a very important tool in modern commercial aircraft. Considering limited built-in sensing devices on the legacy aircraft model,one of the challenges for airborne system health monitoring is to find an appropriate health indicator that is highly related to the actual degradation state of the system. This paper proposed a novel health indicator extraction method based on the available sensor parameters for the health monitoring of Air Conditioning System(ACS) of a legacy commercial aircraft model. Firstly, a specific Airplane Condition Monitoring System(ACMS) report for ACS health monitoring is defined. Then a non-parametric modeling technique is adopted to calculate the health indicator based on the raw ACMS report data. The proposed method is validated on a single-aisle commercial aircraft widely used for short and medium-haul routes, using more than 6000 ACMS reports collected from a fleet of aircraft during one year. The case study result shows that the proposed health indicator can effectively characterize the degradation state of the ACS, which can provide valuable information for proactive maintenance plan in advance.展开更多
To settle the indicators of air pollutions at the industrial enterprises is very important. For this purpose, authors analyzed and developed a program for monitoring atmospheric composition in Borland Delphi 7 for the...To settle the indicators of air pollutions at the industrial enterprises is very important. For this purpose, authors analyzed and developed a program for monitoring atmospheric composition in Borland Delphi 7 for the calculation of the hazard class and the average daily maximum allowable concentration of air. Results of calculations on this program will allow operating composition of air by regulation of operating modes of filtering devices.展开更多
Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atm...Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atmosphere. The air quality in urban areas is of a great concern for residents living in cities and represents a current issue that requires an adequate management. So that air quality policy is driven by health concerns. In this paper, we present an overview on the experience of Agadir city to establish the air quality management policy, local authority on the whole have developed a good understanding of air quality in the area. Indeed for several years, efforts have been made to monitor the air quality in this city, this translated by air quality assessment since 2006 using mobile laboratory and fixed station. Our goals in this study were to review the operation of Local Air Quality Management (LAQM) making better use of available resources to improve its outcomes and make recommendations with a view to improving air quality issues. This work highlights the requirement to revise periodically the LAQM for generating priority for air quality issues within local authority and the need to implement the optimizing Air Quality Monitoring Network (AQMN).展开更多
In the state of Sao Paulo, Brazil, public policies regarding the air quality aimed at the welfare of the population are strongly dependent on monitoring conducted by the Sao Paulo State Environmental Company (CETESB),...In the state of Sao Paulo, Brazil, public policies regarding the air quality aimed at the welfare of the population are strongly dependent on monitoring conducted by the Sao Paulo State Environmental Company (CETESB), which can be influenced by faulty monitors and equipment support and cuts in power supply, among others. A research conducted from 1998 to 2008 indicated that a significant portion of the air quality automatic stations in the state of Sao Paulo did not meet the criterion of representativeness of measurements of PM10, NO2, O3, CO and SO2 concentrations which resulted in the classification of some municipalities as the nonattainment area, a situation evidenced for PM10 and O3 parameters. The network unavailability for each parameter was estimated and compared with the monitoring networks operated in Canada and the UK. This paper discusses the implications of the lack of representativeness of measurements in the environmental licensing process of pollution sources from 2008, when by the effect of state law, municipalities have been qualified according to their air quality nonattainment level.展开更多
In Thailand, the alteration of weather patterns has resulted in an increase in instances of irregular rainfall, contributing to the occurrence of droughts. The decline of water levels in dams, due to the combined effe...In Thailand, the alteration of weather patterns has resulted in an increase in instances of irregular rainfall, contributing to the occurrence of droughts. The decline of water levels in dams, due to the combined effects of climate change and prolonged droughts, has had a significant impact on agricultural productivity. Drought has a profound effect on the terrestrial biosphere and the atmospheric water cycle and can also contribute to air pollution. Researchers have found a strong correlation between air pollution and drought severity. In response to this pressing issue, the Excellence Center of Space Technology and Research (ECSTAR) at King Mongkut’s Institute of Technology Ladkrabang has joined forces with TeroSpace company to launch an initiative aimed at promoting sustainable growth in Chiang Rai, a province in Thailand known for its rich biodiversity. ECSTAR and TeroSpace’s partnership on the sustainable growth initiative in Thailand’s Chiang Rai province focuses on expanding their collaboration to include international organizations such as the Centre National d’Etudes Spatiales (CNES), which will provide access to satellite imagery and climate and weather information to improve decision-making in various areas of development. CNES is a French organization in charge of space-related activities in France. The collaboration between France and Thailand for this project, in the context of the France-Thailand Year of Innovation 2023, will be crucial for the successful initiation and execution of this research project. The project aims to explore the relationship between air pollution and climate change through the deployment of air quality monitoring devices in designated locations, connected to a global data-sharing network. The results of this research will be valuable to policymakers as they consider the interplay between air pollution and climate change and make efforts to address these challenges.展开更多
Critical situations that cannot be solved by conventional approaches (traditional air quality monitoring networks), have the possibility of being managed quickly by a wide network of portable systems with sensors. The...Critical situations that cannot be solved by conventional approaches (traditional air quality monitoring networks), have the possibility of being managed quickly by a wide network of portable systems with sensors. The purpose of this research was to calibrate and validate low-cost sensors. Pilot indoor and outdoor areas, in the central area of Brasilia (Brazil’s capital city) were chosen for corporative performance evaluation of the sensors. The CO at 99.999% volumetric injection method has been used in a gas test box, among two MiCS-5521 (CO/VOC) sensors, one being new and the other one with a short useful life. The number of injections adopted to each volume (from 1 ml to 6 ml) was 10, rising each sensor’s confidence interval mean. A increase of the injected volume (ml) of CO resulted in significant decrease in a resistance (Ohms), as shown by a good inverse relationship on the interaction of these two variables (r = 0.88), with good measurement accuracy, when compared to the manufacturer’s reference datasheet. Finally, a geospatial management system was built for the pollution data measured by the low-cost sensors.展开更多
In a local context, sustainable development entails utilizing the current resources—material and immaterial, measurable and immeasurable, popular and unpopular—of the community in a manner that avoids overexploitati...In a local context, sustainable development entails utilizing the current resources—material and immaterial, measurable and immeasurable, popular and unpopular—of the community in a manner that avoids overexploitation and ensures intergenerational equity. This approach prioritizes the safety and health of local citizens, placing communal productivity above corporate profitability. This research aims to assess air quality surrounding 28 chemical industry sites in Baton Rouge, Louisiana, to understand the environmental and health impacts of industrial pollutants, with a focus on environmental justice. Air quality pollutants, including PM2.5, PM10, O3, NO2, CO, and SO2, were monitored for 75 days during the Summer, using the BreezoMeter app. Python, Mapize, and QGIS software technologies were utilized for data analysis and visualization. Findings indicate a reduction in NO2 and CO levels, compared to existing literature. However, the persistent challenge of particulate matter suggests areas for further environmental management efforts. Additionally, the research suggests a significant disparity in air pollution exposure, probably affecting marginalized communities. Although the nature of the study might not fully capture annual pollution trends, the findings highlight the urgent need for the chemical industry to adopt efficient production methods and for policymakers to enhance air quality standards and enforcement, particularly in pollution-sensitive areas. The disproportionate impact of air pollution on vulnerable communities calls for a more inclusive approach to environmental justice, ensuring equitable distribution of clean air benefits and community involvement in pollution management decisions.展开更多
Environmental monitoring of airborne formaldehyde (FA) using sensitive methodologies is fundamental to prevent health risks. The objective of this study was to compare three different FA monitoring methods during the ...Environmental monitoring of airborne formaldehyde (FA) using sensitive methodologies is fundamental to prevent health risks. The objective of this study was to compare three different FA monitoring methods during the daily activities of an anatomic pathology laboratory. Daily eight-hour measurements deriving from Radiello® passive diffusive samplers (PDS), NEMo XT continuous optical sensor (COS), and multi-gas 1512 photoacoustic monitor (MPM) were simultaneously compared over a period of 14 working days. Given the different daily distributions of the measurements performed by the three devices, all measurements were time-aligned for comparison purposes. The 95% limit of agreement (LOA) method was applied to estimate the degree of concordance of each device with respect to the others. Formaldehyde arithmetic mean measured using PDS was 32.6 ± 10.4 ppb (range: 19.8 - 62.7). The simultaneous measures performed by COS and MPM were respectively 42.4 ± 44.8 ppb (range: 7.0 - 175.0) and 189.0 ± 163.7 ppb (range: 40.0 - 2895.4). The MPM geometric mean (171.3 ppb) was approximately five times higher than those derived from COS (32.3 ppb) and PDS (31.4 ppb). The results of the LOA method applied to log-transformed FA data showed the same systematic discrepancies between MPM and the other two devices. A good agreement between PDS and COS could lead to a tailored approach according to the individual specificity of these techniques. This tool may be useful for accurately assessing the risk of FA exposure among healthcare workers. However, the limited specificity of the MPM does not support its use as a monitoring method for FA in the workplace.展开更多
基金This work was based on a previous article presented in 1st Three Gorges Research Forum on Environment and Economy, TGRF2007, at Chongqing University, July 18-19, 2007.
文摘To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental monitoring data and the macro control principle were employed to configure the upper layer. The lower layer was designed by the application of the thumb rule to a local terrain and specific point sources of pollution therein. The optimized two-level system comprises an upper layer of 16 monitoring stations distributed at places of diverse geographical, ecological, economical and social characteristics, and a lower layer of ]6 sub-machines at each monitoring station of the upper layer. This optimal outcome fits the complicated conditions of the Three Gorges Reservoir area, substantially cuts down the installation cost and the operation cost, and provides accurate monitoring data of atmosphere over the entire area with a high resolution.
文摘In the current rapid development of China's environmental protection cause, the construction and control work of environmental protection projects in various parts of the country are becoming more and stricter. Through the air monitoring of environmental protection projects, the actual operation value of environmental protection project construction can be well improved. However, there are still many external influencing factors in the field work of air monitoring, which have a negative impact on the quality of the overall monitoring work. Therefore, it is necessary to actively do a good job in the air monitoring of environmental protection projects. So as to ensure that the results of air monitoring can reflect the actual conditions of the atmosphere in the region, actively carry out the air monitoring and control work of environmental protection projects, enable the air monitoring work to be carried out to the maximum extent, and provide more help for the value of environmental projects. However, in the current air monitoring work of environmental protection projects, there are various problems, which have brought serious adverse effects to the overall air monitoring work of the project. Therefore, it is necessary to pay attention to the attention of relevant quality control staff, and to improve the quality of the air monitoring site of environmental protection projects.
文摘Trichloroethylene (TCE) is a chlorinated liquid that is commonly used for metal degreasing, household and industrial dry cleaning, and in paints and glues. Tetrachloroethylene, also known as perchloroethylene (PCE), is an excellent solvent for organic materials. PCE is volatile, highly stable, non-flammable and widely used in dry cleaning. A new method has been developed for measuring TCE and PCE in ambient air in real-time. Based upon the chemical fingerprinting and concentration levels, the method was able to isolate the source of the emissions to the responsible facility. Real-time monitoring was accomplished by utilizing a low pressure chemical ionization source (LPCI) interfaced to a tandem mass spectrometer (TAGA). Monitoring the response of specific parent/daughter ion pairs, the TAGA was used to measure concentrations of TCE and PCE. By optimizing various TAGA parameters, detection limits (DL) as low as 0.5 μg/m3 was achieved for TCE and PCE. Unlike methods using cartridge sampling and GC/MS analysis, this new method provides a real time measurement for a wide range of TCE and PCE concentrations. This unique method was applied in 2000 and 2002 to measure TCE emitted from a manufacturer of stainless steel tubing in Eastern Ontario. The maximum half-hour average concentration of TCE measured downwind of the facility was 1300 μg/m3 and the maximum instantaneous level was measured at 115,000 μg/m3. The information collected by the TAGA unit was used by the Standard Development Branch of Ontario Ministry of the Environment to adopt the half-hour Point of Impingement (POI) standard of TCE to be 36 μg/m3 in 2010. This method successfully identified and simultaneously measured TCE and PCE during a 2011 air monitoring survey of a hazardous waste disposal and treatment facility in Southern Ontario.
文摘Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data.
文摘This work aims to provide a methodology framework which allows to improve the performance and efficiency of an air quality monitoring network(AQMN).It requires to be constituted by a minimum and reliable number of measurement sites.Nevertheless,the AQMN efficiency should be assessed over time,as a consequence of the possible emergence of new emission sources of air pollutants,which could lead to variations on their spatial distribution within the target area.PM_(10)particles data monitored by the Community of Madrid's(Spain)AQMN between 2008 and 2017 were used to develop a methodology to optimize the AQMN performance.The annual spatial distribution of average PM_(10)levels over the studied period monitored by all current stations vs those more representative was provided by a geographic information system(GIS),and the percentage of similarity between both postulates was quantified using simple linear regression(>95%).As one innovative tool of this study,the practical application of the proposed methodology was validated using PM_(10)particles data measured by AQMN during 2007 and 2018,reaching a similitude degree higher than 95%.The influence of temporal variation on the proposed methodological framework was around 20%.The proposed methodology sets criteria for identifying non-redundant stations within AQMN,it is also able to appropriately assess the representativeness of fixed monitoring sites within an AQMN and it complements the guidelines set by European legislation on air pollutants monitoring at fixed stations,which could help to tackle efforts to improve the air quality management.
文摘A monitoring campaign of BTEX (benzene, toluene, ethylbenzene, o- m- and p-xylene) was carried out nearby two tunnel portals in the urban area of Naples with the aim to verify air quality in this kind of urban sites. Sampling was carried out using the active adsorption technique. Sampling time was 1 h. Ambient temperature and traffic flow measurements were carried out during each sampling operation. The results indicate that average benzene concentrations at both sites exceed the limit value of 10 μg/Nm^3 established by the European Community (EC) (Dir. 2000/69). Concentration levels of other BTEX are relatively high as well. A correlation between BTEX concentration and two wheeler vehicle flow was observed.
文摘This paper presents an experimental study on real-time air pollution monitoring using wireless sensors on public transport vehicles.The study is part of the GreenIoT project in Sweden,which utilizes Internet-of-Things to measure air pollution level in the city center of Uppsala.Through deploying low-cost wireless sensors,it is possible to obtain more fine-grained and real-time air pollution levels at different locations.The sensors on public transport vehicles complement the readings from stationary sensors and the only ground level monitoring station in Uppsala.The paper describes the deployment of wireless sensors on Uppsala buses and the integration of the mobile sensor network with the GreenIoT testbed.Extensive experiments have been conducted to evaluate the communication quality and data quality of the system.
文摘This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.
文摘The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.
文摘Results of environmental radioactivity monitoring around Qinshan Nuclear Power Plant (QNPP) are reported in this paper. From 1992 to 2005, concentrations of 90Sr, 137Cs and 3H in terrestrial freshwater are (4.4±1.7) mBq·L-1, (0.3±0.1) mBq·L-1 and (1.6±0.5) Bq·L-1, respectively, and (2.8±2.4) Bq·L-1 of 3H in rainwater. Concentrations of 90Sr, 137Cs and 3H in the seawater samples collected from sea area nearby QNPP are (5.4±4.1) mBq·L-1, (0.7±0.2) mBq·L-1 and (1.0±0.5) Bq·L-1, respectively. Concentrations of 90Sr, 137Cs and 3H in the total waste water discharged from NPP-I are (4.0±1.8) m Bq·L-1, (1.0±0.5) mBq·L-1 and (2.8±2.2) Bq·L-1, respectively, and (1.4±0.4) Bq·L-1 of 3H in seawater sampled from No.1 outlet. Atomspheric 3H concentration in 1993~2005 at two monitoring sites is (78.9±96.3) and (64.2±40.2) mBq·m-3, respectively, with an increasing trend after 2003. Atmospheric 14C concentrations at the two sites are in the same levels as the background and data of the reference site.
基金financially supported by the National Key R&D Program of China(2017YFC 0209905)the Natural Sciences Foundation of China(No.51878012,51638001)+1 种基金the project supported by Beijing Municipal Education Commission of Science and Technology(No.KM201610005019)the New Talent Program of Beijing University of Technology(No.2017-RX(1)-10)
文摘In this study, an analysis framework based on the regular monitoring data was proposed for investigating the annual/inter-annual air quality variation and the contributions from different factors(i.e., seasons, pollution periods and airflow directions), through a case study in Beijing from 2013 to 2016. The results showed that the annual mean concentrations(MC) of PM_(2.5), SO_2, NO_2 and CO had decreased with annual mean ratios of 7.5%, 28.6%, 4.6%and 15.5% from 2013 to 2016, respectively. Among seasons, the MC in winter contributed the largest fractions(25.8%~46.4%) to the annual MC, and the change of MC in summer contributed most to the inter-annual MC variation(IMCV) of PM_(2.5) and NO2. For different pollution periods, gradually increase of frequency of S-1(PM_(2.5), 0~ 75 μg/m^3) made S-1 become the largest contributor(28.8%) to the MC of PM_(2.5) in 2016, it had a negative contribution(-13.1%) to the IMCV of PM_(2.5); obvious decreases of frequencies of heavily polluted and severely polluted dominated(44.7% and 39.5%) the IMCV of PM_(2.5). For different airflow directions, the MC of pollutants under the south airflow had the most significant decrease(22.5%~62.5%), and those decrease contributed most to the IMCV of PM_(2.5)(143.3%),SO2(72.0%), NO_2(55.5%) and CO(190.3%); the west airflow had negative influences to the IMCV of PM_(2.5), NO_2 and CO. The framework is helpful for further analysis and utilization of the large amounts of monitoring data; and the analysis results can provide scientific supports for the formulation or adjustment of further air pollution mitigation policy.
基金supported by the National Natural Science Foundation of China (61403198)the Jiangsu Province Natural Science Foundation of China (BK20140827)China Postdoctoral Science Foundation (2015M581792)
文摘Prognostics and Health Management(PHM) has become a very important tool in modern commercial aircraft. Considering limited built-in sensing devices on the legacy aircraft model,one of the challenges for airborne system health monitoring is to find an appropriate health indicator that is highly related to the actual degradation state of the system. This paper proposed a novel health indicator extraction method based on the available sensor parameters for the health monitoring of Air Conditioning System(ACS) of a legacy commercial aircraft model. Firstly, a specific Airplane Condition Monitoring System(ACMS) report for ACS health monitoring is defined. Then a non-parametric modeling technique is adopted to calculate the health indicator based on the raw ACMS report data. The proposed method is validated on a single-aisle commercial aircraft widely used for short and medium-haul routes, using more than 6000 ACMS reports collected from a fleet of aircraft during one year. The case study result shows that the proposed health indicator can effectively characterize the degradation state of the ACS, which can provide valuable information for proactive maintenance plan in advance.
文摘To settle the indicators of air pollutions at the industrial enterprises is very important. For this purpose, authors analyzed and developed a program for monitoring atmospheric composition in Borland Delphi 7 for the calculation of the hazard class and the average daily maximum allowable concentration of air. Results of calculations on this program will allow operating composition of air by regulation of operating modes of filtering devices.
文摘Air pollution is a major global issue with widely known harmful effects on human health and the environment. This pollution is a very complex phenomenon given the diversity of pollutants that may be present in the atmosphere. The air quality in urban areas is of a great concern for residents living in cities and represents a current issue that requires an adequate management. So that air quality policy is driven by health concerns. In this paper, we present an overview on the experience of Agadir city to establish the air quality management policy, local authority on the whole have developed a good understanding of air quality in the area. Indeed for several years, efforts have been made to monitor the air quality in this city, this translated by air quality assessment since 2006 using mobile laboratory and fixed station. Our goals in this study were to review the operation of Local Air Quality Management (LAQM) making better use of available resources to improve its outcomes and make recommendations with a view to improving air quality issues. This work highlights the requirement to revise periodically the LAQM for generating priority for air quality issues within local authority and the need to implement the optimizing Air Quality Monitoring Network (AQMN).
文摘In the state of Sao Paulo, Brazil, public policies regarding the air quality aimed at the welfare of the population are strongly dependent on monitoring conducted by the Sao Paulo State Environmental Company (CETESB), which can be influenced by faulty monitors and equipment support and cuts in power supply, among others. A research conducted from 1998 to 2008 indicated that a significant portion of the air quality automatic stations in the state of Sao Paulo did not meet the criterion of representativeness of measurements of PM10, NO2, O3, CO and SO2 concentrations which resulted in the classification of some municipalities as the nonattainment area, a situation evidenced for PM10 and O3 parameters. The network unavailability for each parameter was estimated and compared with the monitoring networks operated in Canada and the UK. This paper discusses the implications of the lack of representativeness of measurements in the environmental licensing process of pollution sources from 2008, when by the effect of state law, municipalities have been qualified according to their air quality nonattainment level.
文摘In Thailand, the alteration of weather patterns has resulted in an increase in instances of irregular rainfall, contributing to the occurrence of droughts. The decline of water levels in dams, due to the combined effects of climate change and prolonged droughts, has had a significant impact on agricultural productivity. Drought has a profound effect on the terrestrial biosphere and the atmospheric water cycle and can also contribute to air pollution. Researchers have found a strong correlation between air pollution and drought severity. In response to this pressing issue, the Excellence Center of Space Technology and Research (ECSTAR) at King Mongkut’s Institute of Technology Ladkrabang has joined forces with TeroSpace company to launch an initiative aimed at promoting sustainable growth in Chiang Rai, a province in Thailand known for its rich biodiversity. ECSTAR and TeroSpace’s partnership on the sustainable growth initiative in Thailand’s Chiang Rai province focuses on expanding their collaboration to include international organizations such as the Centre National d’Etudes Spatiales (CNES), which will provide access to satellite imagery and climate and weather information to improve decision-making in various areas of development. CNES is a French organization in charge of space-related activities in France. The collaboration between France and Thailand for this project, in the context of the France-Thailand Year of Innovation 2023, will be crucial for the successful initiation and execution of this research project. The project aims to explore the relationship between air pollution and climate change through the deployment of air quality monitoring devices in designated locations, connected to a global data-sharing network. The results of this research will be valuable to policymakers as they consider the interplay between air pollution and climate change and make efforts to address these challenges.
文摘Critical situations that cannot be solved by conventional approaches (traditional air quality monitoring networks), have the possibility of being managed quickly by a wide network of portable systems with sensors. The purpose of this research was to calibrate and validate low-cost sensors. Pilot indoor and outdoor areas, in the central area of Brasilia (Brazil’s capital city) were chosen for corporative performance evaluation of the sensors. The CO at 99.999% volumetric injection method has been used in a gas test box, among two MiCS-5521 (CO/VOC) sensors, one being new and the other one with a short useful life. The number of injections adopted to each volume (from 1 ml to 6 ml) was 10, rising each sensor’s confidence interval mean. A increase of the injected volume (ml) of CO resulted in significant decrease in a resistance (Ohms), as shown by a good inverse relationship on the interaction of these two variables (r = 0.88), with good measurement accuracy, when compared to the manufacturer’s reference datasheet. Finally, a geospatial management system was built for the pollution data measured by the low-cost sensors.
文摘In a local context, sustainable development entails utilizing the current resources—material and immaterial, measurable and immeasurable, popular and unpopular—of the community in a manner that avoids overexploitation and ensures intergenerational equity. This approach prioritizes the safety and health of local citizens, placing communal productivity above corporate profitability. This research aims to assess air quality surrounding 28 chemical industry sites in Baton Rouge, Louisiana, to understand the environmental and health impacts of industrial pollutants, with a focus on environmental justice. Air quality pollutants, including PM2.5, PM10, O3, NO2, CO, and SO2, were monitored for 75 days during the Summer, using the BreezoMeter app. Python, Mapize, and QGIS software technologies were utilized for data analysis and visualization. Findings indicate a reduction in NO2 and CO levels, compared to existing literature. However, the persistent challenge of particulate matter suggests areas for further environmental management efforts. Additionally, the research suggests a significant disparity in air pollution exposure, probably affecting marginalized communities. Although the nature of the study might not fully capture annual pollution trends, the findings highlight the urgent need for the chemical industry to adopt efficient production methods and for policymakers to enhance air quality standards and enforcement, particularly in pollution-sensitive areas. The disproportionate impact of air pollution on vulnerable communities calls for a more inclusive approach to environmental justice, ensuring equitable distribution of clean air benefits and community involvement in pollution management decisions.
文摘Environmental monitoring of airborne formaldehyde (FA) using sensitive methodologies is fundamental to prevent health risks. The objective of this study was to compare three different FA monitoring methods during the daily activities of an anatomic pathology laboratory. Daily eight-hour measurements deriving from Radiello® passive diffusive samplers (PDS), NEMo XT continuous optical sensor (COS), and multi-gas 1512 photoacoustic monitor (MPM) were simultaneously compared over a period of 14 working days. Given the different daily distributions of the measurements performed by the three devices, all measurements were time-aligned for comparison purposes. The 95% limit of agreement (LOA) method was applied to estimate the degree of concordance of each device with respect to the others. Formaldehyde arithmetic mean measured using PDS was 32.6 ± 10.4 ppb (range: 19.8 - 62.7). The simultaneous measures performed by COS and MPM were respectively 42.4 ± 44.8 ppb (range: 7.0 - 175.0) and 189.0 ± 163.7 ppb (range: 40.0 - 2895.4). The MPM geometric mean (171.3 ppb) was approximately five times higher than those derived from COS (32.3 ppb) and PDS (31.4 ppb). The results of the LOA method applied to log-transformed FA data showed the same systematic discrepancies between MPM and the other two devices. A good agreement between PDS and COS could lead to a tailored approach according to the individual specificity of these techniques. This tool may be useful for accurately assessing the risk of FA exposure among healthcare workers. However, the limited specificity of the MPM does not support its use as a monitoring method for FA in the workplace.