Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest managemen...Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.展开更多
Burundi faces major agricultural constraints, including land fragmentation, soil erosion, limited access to inputs, inadequate infrastructure and demographic pressures that exacerbate food insecurity. In order to addr...Burundi faces major agricultural constraints, including land fragmentation, soil erosion, limited access to inputs, inadequate infrastructure and demographic pressures that exacerbate food insecurity. In order to address the multiple challenges faced by farmers in rural areas, a study on improving agricultural productivity and food security in Burundi through optimized land use and diversified farming practices in agroforestry systems has been carried out. The study area is the communes of Giheta and Rutegama, all located in Burundi’s humid plateau livelihood zone, and involved 164 households grouped in coffee growing cooperatives supervised by the cooperative consortium COCOCA. The study uses a mathematical programming model to determine optimal crop selection based on factors such as production costs, yields and market demand. The findings of the study revealed significant insights into the demographic and socio-economic characteristics of the sampled population. Notably, 98.8% of respondents were engaged in agriculture, confirming the predominantly agricultural nature of Burundi. The results indicated that maize is the most important crop, occupying 33.9% of the average total cultivated area, followed by cassava at 26.5% and bananas at 19.4%. Together, these three crops accounted for a substantial portion of the total cultivated area, highlighting their significance in local agriculture. Beans and potatoes also play a role, occupying 14.4% and smaller areas, respectively. In terms of profitability, the study provides a detailed analysis of profit margins by crop. Bananas emerges as the most profitable crop, with a profit margin of 97.3%, followed closely by cassava at 96.1% and rice at 90.5%. These crops not only offered substantial yields relative to their production costs but also benefited from strong market demand. Other crops, such as beans (71.3%), coffee (70.3%), and vegetables (54.5%), also demonstrated considerable profitability, although they occupied smaller cultivated areas. Conversely, crops like pigeon peas (4.1%), potatoes (7.6%), and sweet potatoes (7.6%) exhibited the lowest profit margins, which may discourage farmers from investing in them unless other incentives, such as ecological benefits or local consumption needs, are present. Regarding the results, we therefore recommend to promote policies supporting agroforestry, improve market access and develop infrastructure to exploit these benefits.展开更多
Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a signifi...Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.展开更多
Agroforestry,as a platform for harmonizing agriculture and forestry is a win-win approach for the farming community and environmental sustainability.However,its potential is not well studied and quantified in Northwes...Agroforestry,as a platform for harmonizing agriculture and forestry is a win-win approach for the farming community and environmental sustainability.However,its potential is not well studied and quantified in Northwestern highland.Thus,this study aimed to investigate the woody species diversity,and carbon stock potential of traditional agroforestry practices in Northwestern Highlands(NWH)of Ethiopia.A total of 120 households were selected using stratified sampling for household(HH)surveys,and vegetation inventory was conducted in the winter season of 2023 on systematically laid 400 m2 sample quadrats.Shannon-Weiner diversity index(H’),Simpson’s diversity index(1-D)and Shannon evenness(E)were calculated to estimate woody species diversity.Variation in species diversity and carbon stock within and between agroforestry practices was assessed by 1-way ANOVA and rank differences were separated by post-hoc,Tukey HSD multiple comparison test.The result showed that four different agroforestry practices were identified,consisting of 44 woody species belonging to 23 families.Homegarden was the richest in terms of woody species composition(30),followed by boundary planting(25),while parkland agroforestry had the poorest species composition(12).The total carbon stock of the agroforestry practices in the study ranged from 92.51±29.21 to 143.52±47.83 Mg/ha),with soil organic carbon accounting for about 57.66%,followed by aboveground biomass carbon with 32.1%.Homegardens agroforestry had contributed more to the total carbon stocks than the other agroforestry practices.The total CO_(2)sequestration by above and below ground biomass of woody species in the traditional agroforestry practices of the NWH was estimated to be 519.97 and 104.01 Mg/ha,respectively.The study confirmed that the traditional agroforestry practices of the NWH of Ethiopia maintain a high diversity of woody species and are remarkably important for biodiversity conservation and climate change mitigation.展开更多
Climate change has been a global pandemic with its adverse impacts affecting environments and livelihoods. This has been largely attributed to anthropogenic activities which generate large amounts of Green House Gases...Climate change has been a global pandemic with its adverse impacts affecting environments and livelihoods. This has been largely attributed to anthropogenic activities which generate large amounts of Green House Gases (GHGs), notably carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) among others. In the Upper East of Ghana, climate change manifests in erratic rainfalls, drought, high temperatures, high wind speeds, high intensity rainfall, windstorms, flooding, declining vegetation cover, perennial devastating bushfires etc. Practices such as burning farm residues, use of dung as fuel for cooking, excessive application of nitrogenous fertilizers, and deforestation that are prevalent in the region exacerbate the situation. Although, efforts made by governmental and none-governmental organizations to mitigate climate change through afforestation, agroforestry and promotion of less fuelwood consuming cook stoves, land management practices antagonize these efforts as more CO2 is generated than the carrying capacity of vegetation in the region. Research findings have established the role of trees and soil in carbon sequestration in mitigating climate. However, there is limited knowledge on how the vegetation and soil in agroforestry interplay in mitigation climate change. It is against this background that this review seeks to investigate how vegetation and soil in an agroforestry interact synergistically to sequester carbon and contribute to mitigating climate change in Upper East region of Ghana. In this review, it was discovered soil stored more carbon than vegetation in an agroforestry system and is much effective in mitigating climate change. It was found out that in order to make soil and vegetation in an agroforestry system interact synergistically to effectively mitigate climate change, Climate Smart Agriculture practice which integrates trees, and perennials crops effectively mitigates climate. The review concluded that tillage practices that ensure retention and storage of soil organic carbon (SOC) could be much effective in carbon sequestration in the Savannah zones and could be augmented with vegetation to synergistically mitigate climate change in the Upper East region of Ghana.展开更多
Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using Ci...Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using CiteSpace software, we visually analyzed research literature from the Web of Science (WOS) core database, spanning 2004 to 2024. The focus was on the impact of rubber agroforestry ecosystems on soil microbial communities. The results indicate significant attention from Chinese researchers, who have published numerous influential papers in this field. Authors Liu Wenjie have contributed the most papers, although no stable core author group exists. The Chinese Academy of Sciences is the leading research institution in terms of publication volume. While there is close collaboration between different institutions and countries, the intensity of researcher cooperation is low. The most cited literature emphasizes soil nutrients and structure in rubber agroforestry, laying a foundation for soil microorganism studies. Most cited journals are from countries like Netherlands and the United Kingdom. Key research areas include the effects of rubber intercropping on soil microbial communities, agroforestry management, and soil health. Research development can be divided into three stages: the initial stage (2010-2015), the development stage (2015-2020), and the mature stage (2020-2024). Current studies show that rubber intercropping and rubber-based agroforestry systems enhance soil microbial communities, positively impacting soil health. This paper provides a theoretical basis for the sustainable development of rubber agroforestry systems and improved management plans. Future research could explore the effects of species composition on soil microbiological characteristics and develop methods for species interactions. An in-depth study of the soil microbial community’s structure and function, and its relationship with rubber trees, is crucial. Developing effective, rationally designed rubber agroforestry systems and underground soil microbiome technology will promote sustainability and improve plantation productivity.展开更多
Nigeria’s deforestation rate is at an alarming level due to weak forest governance, losing about 80 kha of natural forest cover per annum every year to agricultural land expansion, conflicts, and illegal logging. The...Nigeria’s deforestation rate is at an alarming level due to weak forest governance, losing about 80 kha of natural forest cover per annum every year to agricultural land expansion, conflicts, and illegal logging. The expansion of agricultural land over other land use is over 50% and it is increasing. Agroforestry, as an option, offers a dynamic, ecologically based, natural resource management system that integrates forest trees into the agricultural landscape for the benefit of land users at all levels. This research aimed to assess the diversity and abundance of agroforestry tree species between the forest and farm zones at Edun Forest Reserve to improve agrobiodiversity by identifying tree species richness around farms in the reserve. A systematic sampling technique was used to sample plots, and relative dominance and important value index were determined. Results showed a significant difference between the species richness between the forest zone and farm zone of Edun Forest Reserve. On the important value index, Gmelina arborea (25.04) has the highest in the forest zone, while Cedrela odorata (0.661) is the least, and Tectona grandis (39.37) is the species with the highest in the farm zone Terminalia ivorensis (2.91) recorded the least. Combretaceae was identified as the most dominant family across the two zones. This research showed that appraisal of tree stand structure on farmlands is crucial for sustainable agroforestry management decisions in the forest zones of Nigeria.展开更多
The UN International Panel Environment Programme (“UNEP”), 2023 Emissions Gap Report urgently presses the global community to adopt a two-pronged approach to reduce atmospheric concentration of CO2—expedite efforts...The UN International Panel Environment Programme (“UNEP”), 2023 Emissions Gap Report urgently presses the global community to adopt a two-pronged approach to reduce atmospheric concentration of CO2—expedite efforts to reduce annual CO2 emissions;and increase investment in large-scale carbon dioxide removal (“CDR”) projects. The Gap Report sets a 2050 target of six-gigatons annual land-based CDR. Our proposed agroforestry project will convert thirty-five-million acres of rangeland in the American Great Plains to silvopasture, combining growing trees and raising livestock. Employing agroforestry interests 61% of Great Plaints farmers/ranchers recently surveyed. The Project plans to annually collect + six-gigatons CO2 equiv. of fallen leaves and store the stable carbon-rich biomass underground for centuries. The purpose of this paper is to describe the framework for formation of a global partnership at the local, regional, and international levels to coordinate public and private financing mechanisms, implement, and operate a large-scale CDR Project that will meaningfully impact the global effort to mitigate climate change.展开更多
文摘Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.
文摘Burundi faces major agricultural constraints, including land fragmentation, soil erosion, limited access to inputs, inadequate infrastructure and demographic pressures that exacerbate food insecurity. In order to address the multiple challenges faced by farmers in rural areas, a study on improving agricultural productivity and food security in Burundi through optimized land use and diversified farming practices in agroforestry systems has been carried out. The study area is the communes of Giheta and Rutegama, all located in Burundi’s humid plateau livelihood zone, and involved 164 households grouped in coffee growing cooperatives supervised by the cooperative consortium COCOCA. The study uses a mathematical programming model to determine optimal crop selection based on factors such as production costs, yields and market demand. The findings of the study revealed significant insights into the demographic and socio-economic characteristics of the sampled population. Notably, 98.8% of respondents were engaged in agriculture, confirming the predominantly agricultural nature of Burundi. The results indicated that maize is the most important crop, occupying 33.9% of the average total cultivated area, followed by cassava at 26.5% and bananas at 19.4%. Together, these three crops accounted for a substantial portion of the total cultivated area, highlighting their significance in local agriculture. Beans and potatoes also play a role, occupying 14.4% and smaller areas, respectively. In terms of profitability, the study provides a detailed analysis of profit margins by crop. Bananas emerges as the most profitable crop, with a profit margin of 97.3%, followed closely by cassava at 96.1% and rice at 90.5%. These crops not only offered substantial yields relative to their production costs but also benefited from strong market demand. Other crops, such as beans (71.3%), coffee (70.3%), and vegetables (54.5%), also demonstrated considerable profitability, although they occupied smaller cultivated areas. Conversely, crops like pigeon peas (4.1%), potatoes (7.6%), and sweet potatoes (7.6%) exhibited the lowest profit margins, which may discourage farmers from investing in them unless other incentives, such as ecological benefits or local consumption needs, are present. Regarding the results, we therefore recommend to promote policies supporting agroforestry, improve market access and develop infrastructure to exploit these benefits.
文摘Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.
基金financed by Debre Markose University Burie Campus.
文摘Agroforestry,as a platform for harmonizing agriculture and forestry is a win-win approach for the farming community and environmental sustainability.However,its potential is not well studied and quantified in Northwestern highland.Thus,this study aimed to investigate the woody species diversity,and carbon stock potential of traditional agroforestry practices in Northwestern Highlands(NWH)of Ethiopia.A total of 120 households were selected using stratified sampling for household(HH)surveys,and vegetation inventory was conducted in the winter season of 2023 on systematically laid 400 m2 sample quadrats.Shannon-Weiner diversity index(H’),Simpson’s diversity index(1-D)and Shannon evenness(E)were calculated to estimate woody species diversity.Variation in species diversity and carbon stock within and between agroforestry practices was assessed by 1-way ANOVA and rank differences were separated by post-hoc,Tukey HSD multiple comparison test.The result showed that four different agroforestry practices were identified,consisting of 44 woody species belonging to 23 families.Homegarden was the richest in terms of woody species composition(30),followed by boundary planting(25),while parkland agroforestry had the poorest species composition(12).The total carbon stock of the agroforestry practices in the study ranged from 92.51±29.21 to 143.52±47.83 Mg/ha),with soil organic carbon accounting for about 57.66%,followed by aboveground biomass carbon with 32.1%.Homegardens agroforestry had contributed more to the total carbon stocks than the other agroforestry practices.The total CO_(2)sequestration by above and below ground biomass of woody species in the traditional agroforestry practices of the NWH was estimated to be 519.97 and 104.01 Mg/ha,respectively.The study confirmed that the traditional agroforestry practices of the NWH of Ethiopia maintain a high diversity of woody species and are remarkably important for biodiversity conservation and climate change mitigation.
文摘Climate change has been a global pandemic with its adverse impacts affecting environments and livelihoods. This has been largely attributed to anthropogenic activities which generate large amounts of Green House Gases (GHGs), notably carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) among others. In the Upper East of Ghana, climate change manifests in erratic rainfalls, drought, high temperatures, high wind speeds, high intensity rainfall, windstorms, flooding, declining vegetation cover, perennial devastating bushfires etc. Practices such as burning farm residues, use of dung as fuel for cooking, excessive application of nitrogenous fertilizers, and deforestation that are prevalent in the region exacerbate the situation. Although, efforts made by governmental and none-governmental organizations to mitigate climate change through afforestation, agroforestry and promotion of less fuelwood consuming cook stoves, land management practices antagonize these efforts as more CO2 is generated than the carrying capacity of vegetation in the region. Research findings have established the role of trees and soil in carbon sequestration in mitigating climate. However, there is limited knowledge on how the vegetation and soil in agroforestry interplay in mitigation climate change. It is against this background that this review seeks to investigate how vegetation and soil in an agroforestry interact synergistically to sequester carbon and contribute to mitigating climate change in Upper East region of Ghana. In this review, it was discovered soil stored more carbon than vegetation in an agroforestry system and is much effective in mitigating climate change. It was found out that in order to make soil and vegetation in an agroforestry system interact synergistically to effectively mitigate climate change, Climate Smart Agriculture practice which integrates trees, and perennials crops effectively mitigates climate. The review concluded that tillage practices that ensure retention and storage of soil organic carbon (SOC) could be much effective in carbon sequestration in the Savannah zones and could be augmented with vegetation to synergistically mitigate climate change in the Upper East region of Ghana.
文摘Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using CiteSpace software, we visually analyzed research literature from the Web of Science (WOS) core database, spanning 2004 to 2024. The focus was on the impact of rubber agroforestry ecosystems on soil microbial communities. The results indicate significant attention from Chinese researchers, who have published numerous influential papers in this field. Authors Liu Wenjie have contributed the most papers, although no stable core author group exists. The Chinese Academy of Sciences is the leading research institution in terms of publication volume. While there is close collaboration between different institutions and countries, the intensity of researcher cooperation is low. The most cited literature emphasizes soil nutrients and structure in rubber agroforestry, laying a foundation for soil microorganism studies. Most cited journals are from countries like Netherlands and the United Kingdom. Key research areas include the effects of rubber intercropping on soil microbial communities, agroforestry management, and soil health. Research development can be divided into three stages: the initial stage (2010-2015), the development stage (2015-2020), and the mature stage (2020-2024). Current studies show that rubber intercropping and rubber-based agroforestry systems enhance soil microbial communities, positively impacting soil health. This paper provides a theoretical basis for the sustainable development of rubber agroforestry systems and improved management plans. Future research could explore the effects of species composition on soil microbiological characteristics and develop methods for species interactions. An in-depth study of the soil microbial community’s structure and function, and its relationship with rubber trees, is crucial. Developing effective, rationally designed rubber agroforestry systems and underground soil microbiome technology will promote sustainability and improve plantation productivity.
文摘Nigeria’s deforestation rate is at an alarming level due to weak forest governance, losing about 80 kha of natural forest cover per annum every year to agricultural land expansion, conflicts, and illegal logging. The expansion of agricultural land over other land use is over 50% and it is increasing. Agroforestry, as an option, offers a dynamic, ecologically based, natural resource management system that integrates forest trees into the agricultural landscape for the benefit of land users at all levels. This research aimed to assess the diversity and abundance of agroforestry tree species between the forest and farm zones at Edun Forest Reserve to improve agrobiodiversity by identifying tree species richness around farms in the reserve. A systematic sampling technique was used to sample plots, and relative dominance and important value index were determined. Results showed a significant difference between the species richness between the forest zone and farm zone of Edun Forest Reserve. On the important value index, Gmelina arborea (25.04) has the highest in the forest zone, while Cedrela odorata (0.661) is the least, and Tectona grandis (39.37) is the species with the highest in the farm zone Terminalia ivorensis (2.91) recorded the least. Combretaceae was identified as the most dominant family across the two zones. This research showed that appraisal of tree stand structure on farmlands is crucial for sustainable agroforestry management decisions in the forest zones of Nigeria.
文摘The UN International Panel Environment Programme (“UNEP”), 2023 Emissions Gap Report urgently presses the global community to adopt a two-pronged approach to reduce atmospheric concentration of CO2—expedite efforts to reduce annual CO2 emissions;and increase investment in large-scale carbon dioxide removal (“CDR”) projects. The Gap Report sets a 2050 target of six-gigatons annual land-based CDR. Our proposed agroforestry project will convert thirty-five-million acres of rangeland in the American Great Plains to silvopasture, combining growing trees and raising livestock. Employing agroforestry interests 61% of Great Plaints farmers/ranchers recently surveyed. The Project plans to annually collect + six-gigatons CO2 equiv. of fallen leaves and store the stable carbon-rich biomass underground for centuries. The purpose of this paper is to describe the framework for formation of a global partnership at the local, regional, and international levels to coordinate public and private financing mechanisms, implement, and operate a large-scale CDR Project that will meaningfully impact the global effort to mitigate climate change.