There has been a large increase in the number of days per year with numerous EF1-EF5 tornadoes.Given the significant damage incurred by tornadoes upon communities,community resilience analyses for tornado-stricken com...There has been a large increase in the number of days per year with numerous EF1-EF5 tornadoes.Given the significant damage incurred by tornadoes upon communities,community resilience analyses for tornado-stricken communities have been gaining momentum.As the community resilience analysis aims to guide how to lay out effective hazard mitigation strategies to decrease damage and improve recovery,a comprehensive and accurate approach is necessary.Agent-based modeling,an analysis approach in which different types of agents are created with their properties and behavior clearly defined to simulate the processes of those agents in an external environ-ment,is the most comprehensive and accurate approach so far to conducting community resilience simulations and investigating the decision-making for mitigation and recovery under natural hazards.In this paper,agent-based models(ABMs)are created to simulate the recovery process of a virtual testbed based on the real-world community in Joplin City,MO.The tornado path associated with the real-world tornado event that occurred in May 2011 is adopted in the tornado hazard modeling for the Joplin testbed.In addition,agent-based models are created for another virtual community in the Midwest United States named Centerville using an assumed tornado scenario of the same EF-scale as that in Joplin.The effects of hazard mitigation strategies on the two communities are also explored.A comparison between the analysis results of these two testbeds can indicate the influence of the characteristics of a tornado-prone community on the resilience of the community as well as on the effects of hazard mitigation strategies.It is observed that a community’s level of development significantly impacts the tornado resilience.In addition,the effects of a specific type of hazard mitigation strategy on the recovery process are contingent upon testbed characteristics.展开更多
Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subs...Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subsequent impact on urban structure.Considering the varying travel costs associated with electric and fuel vehicles,we analyze the dynamic choices of households concerning house locations and vehicle types in a two-dimensional monocentric city.A spatial equilibrium is developed to model the interactions between urban density,vehicle age and vehicle type.An agent-based microeconomic residential choice model dynamically coupled with a house rent market is developed to analyze household choices of home locations and vehicle energy types,considering vehicle ages and competition for public charging piles.Key findings from our proposed models show that the proportion of electric vehicles(EVs)peaks at over 50%by the end of the first scrappage period,accompanied by more than a 40%increase in commuting distance and time compared to the scenario with only fuel vehicles.Simulation experiments on a theoretical grid indicate that heterogeneity-induced residential segregation can lead to urban sprawl and congestion.Furthermore,households with EVs tend to be located farther from the city center,and an increase in EV ownership contributes to urban expansion.Our study provides insights into how individuals adapt to EV transitions and the resulting impacts on home locations and land use changes.It offers a novel perspective on the dynamic interactions between EV adoption and urban development.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions.The effect of the hazard geomet...A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions.The effect of the hazard geometry(center and angle of tornado path as well as the tornado width)is studied herein on how it influences the recovery of physical and social systems within the community.Given that pre-disaster preparedness including mitigation strategies(e.g.,retrofits)and policies(e.g.,insurance)is crucial for increasing the resilience of the community and facilitating a faster recovery process,in this study,the impact of various mitigation strategies and policies on the recovery trajectory and resilience of a typical US community subjected to a tornado is investigated considering different sources of uncertainties.The virtual testbed of Centerville is selected in this paper and is modeled by adopting the Agent-based modeling(ABM)approach which is a powerful tool for conducting community resilience analysis that simulates the behavior of different types of agents and their interactions to capture their interdependencies.The results are presented in the form of recovery time series as well as calculated resilience indices for various community systems(lifeline networks,schools,healthcare,businesses,and households).The results of this study can help deepen our understanding of how to efficiently expedite the recovery process of a community.展开更多
The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns ...The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.展开更多
Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-struct...Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time.展开更多
Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply cha...Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sus-tainability.The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks.It includes production,con-sumption,and transportation agents,attributing economic features to supply chain components and cap-turing their interactions.It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors.By coupling high spatial-temporal resolution firm-level data from 18916 chemical enterprises,this study investigates the economic and environmental impacts of an environmen-tal policy resulting in the closure of 1800 chemical enterprises over three years.The results revealed a significant economic loss of 25.8 billion USD,ranging from 23.8 billion to 31.8 billion USD.Notably,over 80%of this loss was attributed to supply chain propagation.Counterfactual analyses indicated that imple-menting a staggered shutdown strategy prevented 18.8%of supply chain losses,highlighting the impor-tance of a gradual policy implementation to prevent abrupt supply chain disruptions.Furthermore,the study highlights the effectiveness of a multi-objective policy design in reducing economic losses(about 29%)and environmental risks(about 40%),substantially enhancing the efficiency of the environmental policy.The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.展开更多
Earthquake is a disastrous natural hazard that threatens numerous cities worldwide.The interval between the foreshock and the main event can sometimes last several minutes.Meanwhile,crowd emergency evacuation and find...Earthquake is a disastrous natural hazard that threatens numerous cities worldwide.The interval between the foreshock and the main event can sometimes last several minutes.Meanwhile,crowd emergency evacuation and finding shelter are vital for search and rescue managers.At the same time,many unpredicted challenges,such as the sudden increase in travel demand,shifts in public behavior,and the change in the regular transport supply,may arise due to evacuation conditions,which lead to different situations.This paper aims to introduce an approach for quick decision-making and timely evacuation response required by establishing a situation-aware system to minimize these risks and ensure the success of the evacuation plans,to support and predict current and future actions within the dynamic space of the crisis.The main contribution is innovating a Situation-Aware Emergency Evacuation(SAEE)model to enable crisis managers and evacuees to make the right decisions by providing timely and reliable information about the situation.This method is utilized in two situations:designing the emergency evacuation plan and finding the shortest/safest routes to reduce travel time for evacuees.Therefore,a hybrid approach is introduced,which involves a Fuzzy Inference System(FIS)and Deep Long Short-Term Memory(DLSTM)algorithm to identify,infer,and extract the existing situation at different levels(e.g.people,vehicles,and surroundings)after a foreshock using multi-agent-based simulation.The method proposed was simulated in the traffic network of District 6 of Tehran,the capital of Iran.The model results show that the evacuees'spatial knowledge and perception,as well as awareness of the situation of other agents and their surroundings,led to a significant(40%)reduction in the complete evacuation time.This time is considered the most pivotal factor in saving human lives and their arrival in safer areas.The role of situation awareness systems and increasing human cognition and perception can significantly help in this matter.展开更多
Land change science has become an interdisciplinary research direction for understanding human-natural coupling systems.As a process-oriented modelling approach,agent based model(ABM)plays an important role in reveali...Land change science has become an interdisciplinary research direction for understanding human-natural coupling systems.As a process-oriented modelling approach,agent based model(ABM)plays an important role in revealing the driving forces of land change and understanding the process of land change.This paper starts from three aspects:The theory,application and modeling framework of ABM.First,we summarize the theoretical basis of ABM and introduce some related concepts.Then we expound the application and development of ABM in both urban land systems and agricultural land systems,and further introduce the case study of a model on Grain for Green Program in Hengduan Mountainous region,China.On the basis of combing the ABM modeling protocol,we propose the land system ABM modeling framework and process from the perspective of agents.In terms of urban land use,ABM research initially focused on the study of urban expansion based on landscape,then expanded to issues like urban residential separation,planning and zoning,ecological functions,etc.In terms of agricultural land use,ABM application presents more diverse and individualized features.Research topics include farmers’behavior,farmers’decision-making,planting systems,agricultural policy,etc.Compared to traditional models,ABM is more complex and difficult to generalize beyond specific context since it relies on local knowledge and data.However,due to its unique bottom-up model structure,ABM has an indispensable role in exploring the driving forces of land change and also the impact of human behavior on the environment.展开更多
Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(...Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(flexible,comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis(PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature,cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution(DS) and feed solution(FS)(known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process(PRO mode) can be efficiently evaluated using the NetL ogo platform.展开更多
Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the ter- ritory that they patr...Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the ter- ritory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nest- mate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and ag- gression. In this article, we develop and explore an agent-based model that conceptualizes how in- dividual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based de- cision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions.展开更多
This work re-examined the simulation result of game analysis (Joshi et al., 2000) based on an agent-based model, Santa Fe Institute Artificial Stock Market. Allowing for recent research work on this artificial model, ...This work re-examined the simulation result of game analysis (Joshi et al., 2000) based on an agent-based model, Santa Fe Institute Artificial Stock Market. Allowing for recent research work on this artificial model, this paper’s modified game simulations found that the dividend amplitude parameter is a crucial factor and that the original conclusion still holds in a not long period, but only when the dividend amplitude is large enough. Our explanation of this result is that the dividend amplitude pa- rameter is a measurement of market uncertainty. The greater the uncertainty, the greater the price volatility, and so is the risk of investing in the stock market. The greater the risk, the greater the advantage of including technical rules.展开更多
Emergencies, which are very difficult to be forecasted, would always bring about huge harm to people. Therefore, to find ways to reduce such devastating effects, researches on emergency management have turned to be pa...Emergencies, which are very difficult to be forecasted, would always bring about huge harm to people. Therefore, to find ways to reduce such devastating effects, researches on emergency management have turned to be paramount. Nowadays, the rapid development of computer technology has supplied a new and effective idea for the researches of emergency management, namely that the researches can be done in computers by performing simulation experiments according to the artificial societies, computational experiments, parallel execution (ACP) approach. Guided by this approach, this paper has proposed one agent-based prototype simulation system to research emergency management. Firstly, structure of the simulation system oriented to emergency management was analyzed and designed. Then a simulation system oriented to public health emergency management was constructed to study the transmission of infectious diseases. Finally, several experiments were carried out based on the system, with several significant conclusions having also been obtained.展开更多
The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the ca...The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures.展开更多
Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden p...Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden particularly in developed countries. Many studies suggest that ulcerative colitis results from an abnormal immune response against components of cornrnensal rnicrobiota in genetically susceptible individuals. However, understanding of the disease mechanisms at cellular and molecular levels remains largely elusive. In this paper, a network model is developed based on our previous study and computer simulations are perforrned using an agent-based network modeling to elucidate the dynamics of immune response in ulcerative colitis progression. Our modeling study identifies several important positive feedback loops as a driving force for ulcerative colitis initiation and progression. The results demonstrate that although immune response in ulcerative colitis patients is dominated by anti-inflarnrnatory/regulatory cells such as alternatively activated rnacrophages and type II natural killer T cells, proinflarnrnatory cells including classically activated rnacrophages, T helper 1 and T helper 17 cells, and their secreted cytokines tumor necrosis factor-α, interleukin-12, interleukin-23, interleukin-17 and interferon-γ remain at certain levels (lower than those in Crohn's disease, another inflammatory bowel disease). Long-terrn exposure to these proinflarnrnatory components, causes rnucosal tissue damage persistently, leading to ulcerative colitis. Our simulation results are qualitatively in agreement with clinical and laboratory measurements, offering novel insight into the disease mechanisms.展开更多
Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavi...Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavior can be a source of systemic risk and increasing distrust for the market participants,consequences that call for viable countermeasures.Building on the foundations provided by the extant literature,this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018.The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies,including a fraudulent agent,initialized from empirical data and who performs market manipulation.The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume.Simulation results provide a satisfactory fit to historical data.Several price dips and volume anomalies are explained by the actions of the fraudulent trader,completing the known body of evidence extracted from blockchain activity.The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period;without this agent,it would have been very unlikely that the price had reached the heights as it did in late 2017.The insights gained from the model,especially the connection between liquidity and manipulation efficiency,unfold a discussion on how to prevent illicit behavior.展开更多
Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathema...Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathematical modeling approach, agent-based models have an inherent spatial component with which they can easily describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transitions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abundance of literature has presented application of agent-based modeling in the biological system. This review focuses on application of agent-based modeling to progression in simulation of infectious disease in the human immune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential implementation of agent-based modeling in relation to infectious disease modeling in future research is explored.展开更多
Air pollution has considerable impact on human health and the wellbeing. Thus many regions of the world have established air pollution standards to ensure a minimum level of air quality. Precise assessment of the heal...Air pollution has considerable impact on human health and the wellbeing. Thus many regions of the world have established air pollution standards to ensure a minimum level of air quality. Precise assessment of the health and socio-economic impacts of air pollution is, however, a complex task;indeed, methods based within an epidemiological tradition generally underestimate human risk of exposure to polluted air. In this study, we introduce an agent-based modeling approach to ascertaining the impact of changes in particulate matter (PM10) on mortality and frequency of hospital visits in the greater metropolitan region of Sydney, Australia. Our modeling approach simulates human movement and behavioral patterns in order to obtain an accurate estimate of individual exposure to a pollutant. Results of our analysis indicate that a 50% reduction in PM10 levels (relative to the baseline) could considerably lower mortality, respiratory hospital admissions and emergency room visits leading to reduced pressure on health care sector costs and placing lower stress on emergency medical facilities. Our analysis also highlights the continued need to avoid significant increases in air pollution in Sydney so that associated health impacts, including health care costs, do not increase.展开更多
基金Financial support for this work was provided by the US Department of Commerce,the National Institute of Standards and Technology(NIST)under the Financial Assistance Award Number#70NANB20H008the US National Science Foundation(NSF)under Award Number 2052930.
文摘There has been a large increase in the number of days per year with numerous EF1-EF5 tornadoes.Given the significant damage incurred by tornadoes upon communities,community resilience analyses for tornado-stricken communities have been gaining momentum.As the community resilience analysis aims to guide how to lay out effective hazard mitigation strategies to decrease damage and improve recovery,a comprehensive and accurate approach is necessary.Agent-based modeling,an analysis approach in which different types of agents are created with their properties and behavior clearly defined to simulate the processes of those agents in an external environ-ment,is the most comprehensive and accurate approach so far to conducting community resilience simulations and investigating the decision-making for mitigation and recovery under natural hazards.In this paper,agent-based models(ABMs)are created to simulate the recovery process of a virtual testbed based on the real-world community in Joplin City,MO.The tornado path associated with the real-world tornado event that occurred in May 2011 is adopted in the tornado hazard modeling for the Joplin testbed.In addition,agent-based models are created for another virtual community in the Midwest United States named Centerville using an assumed tornado scenario of the same EF-scale as that in Joplin.The effects of hazard mitigation strategies on the two communities are also explored.A comparison between the analysis results of these two testbeds can indicate the influence of the characteristics of a tornado-prone community on the resilience of the community as well as on the effects of hazard mitigation strategies.It is observed that a community’s level of development significantly impacts the tornado resilience.In addition,the effects of a specific type of hazard mitigation strategy on the recovery process are contingent upon testbed characteristics.
基金supported by National Natural Science Foundation of China(72288101,72361137002,and 72101018)the Dutch Research Council(NWO Grant 482.22.01).
文摘Vehicle electrification,an important method for reducing carbon emissions from road transport,has been promoted globally.In this study,we analyze how individuals adapt to this transition in transportation and its subsequent impact on urban structure.Considering the varying travel costs associated with electric and fuel vehicles,we analyze the dynamic choices of households concerning house locations and vehicle types in a two-dimensional monocentric city.A spatial equilibrium is developed to model the interactions between urban density,vehicle age and vehicle type.An agent-based microeconomic residential choice model dynamically coupled with a house rent market is developed to analyze household choices of home locations and vehicle energy types,considering vehicle ages and competition for public charging piles.Key findings from our proposed models show that the proportion of electric vehicles(EVs)peaks at over 50%by the end of the first scrappage period,accompanied by more than a 40%increase in commuting distance and time compared to the scenario with only fuel vehicles.Simulation experiments on a theoretical grid indicate that heterogeneity-induced residential segregation can lead to urban sprawl and congestion.Furthermore,households with EVs tend to be located farther from the city center,and an increase in EV ownership contributes to urban expansion.Our study provides insights into how individuals adapt to EV transitions and the resulting impacts on home locations and land use changes.It offers a novel perspective on the dynamic interactions between EV adoption and urban development.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金Financial support for this work was provided by the US Department of Commerce,National Institute of Standards and Technology(NIST)under the Financial Assistance Award Number(FAIN)#70NANB20H008.
文摘A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions.The effect of the hazard geometry(center and angle of tornado path as well as the tornado width)is studied herein on how it influences the recovery of physical and social systems within the community.Given that pre-disaster preparedness including mitigation strategies(e.g.,retrofits)and policies(e.g.,insurance)is crucial for increasing the resilience of the community and facilitating a faster recovery process,in this study,the impact of various mitigation strategies and policies on the recovery trajectory and resilience of a typical US community subjected to a tornado is investigated considering different sources of uncertainties.The virtual testbed of Centerville is selected in this paper and is modeled by adopting the Agent-based modeling(ABM)approach which is a powerful tool for conducting community resilience analysis that simulates the behavior of different types of agents and their interactions to capture their interdependencies.The results are presented in the form of recovery time series as well as calculated resilience indices for various community systems(lifeline networks,schools,healthcare,businesses,and households).The results of this study can help deepen our understanding of how to efficiently expedite the recovery process of a community.
基金funded by the Ministry of Environment and Forestry of the Republic of Indonesia through the research funding assistance program。
文摘The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.
文摘Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time.
基金supported by the National Natural Science Foundation of China(52200228 and 72022004)the China Postdoctoral Science Foundation(2022M721817)the National Key Scientific Research Project(2021YFC3200200).
文摘Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sus-tainability.The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks.It includes production,con-sumption,and transportation agents,attributing economic features to supply chain components and cap-turing their interactions.It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors.By coupling high spatial-temporal resolution firm-level data from 18916 chemical enterprises,this study investigates the economic and environmental impacts of an environmen-tal policy resulting in the closure of 1800 chemical enterprises over three years.The results revealed a significant economic loss of 25.8 billion USD,ranging from 23.8 billion to 31.8 billion USD.Notably,over 80%of this loss was attributed to supply chain propagation.Counterfactual analyses indicated that imple-menting a staggered shutdown strategy prevented 18.8%of supply chain losses,highlighting the impor-tance of a gradual policy implementation to prevent abrupt supply chain disruptions.Furthermore,the study highlights the effectiveness of a multi-objective policy design in reducing economic losses(about 29%)and environmental risks(about 40%),substantially enhancing the efficiency of the environmental policy.The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.
文摘Earthquake is a disastrous natural hazard that threatens numerous cities worldwide.The interval between the foreshock and the main event can sometimes last several minutes.Meanwhile,crowd emergency evacuation and finding shelter are vital for search and rescue managers.At the same time,many unpredicted challenges,such as the sudden increase in travel demand,shifts in public behavior,and the change in the regular transport supply,may arise due to evacuation conditions,which lead to different situations.This paper aims to introduce an approach for quick decision-making and timely evacuation response required by establishing a situation-aware system to minimize these risks and ensure the success of the evacuation plans,to support and predict current and future actions within the dynamic space of the crisis.The main contribution is innovating a Situation-Aware Emergency Evacuation(SAEE)model to enable crisis managers and evacuees to make the right decisions by providing timely and reliable information about the situation.This method is utilized in two situations:designing the emergency evacuation plan and finding the shortest/safest routes to reduce travel time for evacuees.Therefore,a hybrid approach is introduced,which involves a Fuzzy Inference System(FIS)and Deep Long Short-Term Memory(DLSTM)algorithm to identify,infer,and extract the existing situation at different levels(e.g.people,vehicles,and surroundings)after a foreshock using multi-agent-based simulation.The method proposed was simulated in the traffic network of District 6 of Tehran,the capital of Iran.The model results show that the evacuees'spatial knowledge and perception,as well as awareness of the situation of other agents and their surroundings,led to a significant(40%)reduction in the complete evacuation time.This time is considered the most pivotal factor in saving human lives and their arrival in safer areas.The role of situation awareness systems and increasing human cognition and perception can significantly help in this matter.
基金National Natural Science Foundation of China,No.41571098,No.41530749National Key R&D Program of China,No.2017YFC1502903,No.2018YFC1508805。
文摘Land change science has become an interdisciplinary research direction for understanding human-natural coupling systems.As a process-oriented modelling approach,agent based model(ABM)plays an important role in revealing the driving forces of land change and understanding the process of land change.This paper starts from three aspects:The theory,application and modeling framework of ABM.First,we summarize the theoretical basis of ABM and introduce some related concepts.Then we expound the application and development of ABM in both urban land systems and agricultural land systems,and further introduce the case study of a model on Grain for Green Program in Hengduan Mountainous region,China.On the basis of combing the ABM modeling protocol,we propose the land system ABM modeling framework and process from the perspective of agents.In terms of urban land use,ABM research initially focused on the study of urban expansion based on landscape,then expanded to issues like urban residential separation,planning and zoning,ecological functions,etc.In terms of agricultural land use,ABM application presents more diverse and individualized features.Research topics include farmers’behavior,farmers’decision-making,planting systems,agricultural policy,etc.Compared to traditional models,ABM is more complex and difficult to generalize beyond specific context since it relies on local knowledge and data.However,due to its unique bottom-up model structure,ABM has an indispensable role in exploring the driving forces of land change and also the impact of human behavior on the environment.
文摘Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(flexible,comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis(PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature,cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution(DS) and feed solution(FS)(known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process(PRO mode) can be efficiently evaluated using the NetL ogo platform.
文摘Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the ter- ritory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nest- mate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and ag- gression. In this article, we develop and explore an agent-based model that conceptualizes how in- dividual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based de- cision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions.
基金Project supported by the Talent Project Foundation of Zhejiang Province, China
文摘This work re-examined the simulation result of game analysis (Joshi et al., 2000) based on an agent-based model, Santa Fe Institute Artificial Stock Market. Allowing for recent research work on this artificial model, this paper’s modified game simulations found that the dividend amplitude parameter is a crucial factor and that the original conclusion still holds in a not long period, but only when the dividend amplitude is large enough. Our explanation of this result is that the dividend amplitude pa- rameter is a measurement of market uncertainty. The greater the uncertainty, the greater the price volatility, and so is the risk of investing in the stock market. The greater the risk, the greater the advantage of including technical rules.
基金supported by National Natural Science Foundation of China(Nos.91024030 and 91224008)
文摘Emergencies, which are very difficult to be forecasted, would always bring about huge harm to people. Therefore, to find ways to reduce such devastating effects, researches on emergency management have turned to be paramount. Nowadays, the rapid development of computer technology has supplied a new and effective idea for the researches of emergency management, namely that the researches can be done in computers by performing simulation experiments according to the artificial societies, computational experiments, parallel execution (ACP) approach. Guided by this approach, this paper has proposed one agent-based prototype simulation system to research emergency management. Firstly, structure of the simulation system oriented to emergency management was analyzed and designed. Then a simulation system oriented to public health emergency management was constructed to study the transmission of infectious diseases. Finally, several experiments were carried out based on the system, with several significant conclusions having also been obtained.
文摘The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures.
基金supported by the National Natural Science Foundation of China (No.21273209)
文摘Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden particularly in developed countries. Many studies suggest that ulcerative colitis results from an abnormal immune response against components of cornrnensal rnicrobiota in genetically susceptible individuals. However, understanding of the disease mechanisms at cellular and molecular levels remains largely elusive. In this paper, a network model is developed based on our previous study and computer simulations are perforrned using an agent-based network modeling to elucidate the dynamics of immune response in ulcerative colitis progression. Our modeling study identifies several important positive feedback loops as a driving force for ulcerative colitis initiation and progression. The results demonstrate that although immune response in ulcerative colitis patients is dominated by anti-inflarnrnatory/regulatory cells such as alternatively activated rnacrophages and type II natural killer T cells, proinflarnrnatory cells including classically activated rnacrophages, T helper 1 and T helper 17 cells, and their secreted cytokines tumor necrosis factor-α, interleukin-12, interleukin-23, interleukin-17 and interferon-γ remain at certain levels (lower than those in Crohn's disease, another inflammatory bowel disease). Long-terrn exposure to these proinflarnrnatory components, causes rnucosal tissue damage persistently, leading to ulcerative colitis. Our simulation results are qualitatively in agreement with clinical and laboratory measurements, offering novel insight into the disease mechanisms.
基金provided by Marie Sklodowska-Curie ITN Horizon 2020-funded project INSIGHTS(call H2020-MSCA-ITN-2017,grant agreement n.765710)NWO—Nederlandse Organisatie voor Wetenschappelijk Onderzoek(Award Number:KIVI.2019.006 HUMAINER AI project)。
文摘Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavior can be a source of systemic risk and increasing distrust for the market participants,consequences that call for viable countermeasures.Building on the foundations provided by the extant literature,this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018.The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies,including a fraudulent agent,initialized from empirical data and who performs market manipulation.The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume.Simulation results provide a satisfactory fit to historical data.Several price dips and volume anomalies are explained by the actions of the fraudulent trader,completing the known body of evidence extracted from blockchain activity.The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period;without this agent,it would have been very unlikely that the price had reached the heights as it did in late 2017.The insights gained from the model,especially the connection between liquidity and manipulation efficiency,unfold a discussion on how to prevent illicit behavior.
文摘Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathematical modeling approach, agent-based models have an inherent spatial component with which they can easily describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transitions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abundance of literature has presented application of agent-based modeling in the biological system. This review focuses on application of agent-based modeling to progression in simulation of infectious disease in the human immune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential implementation of agent-based modeling in relation to infectious disease modeling in future research is explored.
文摘Air pollution has considerable impact on human health and the wellbeing. Thus many regions of the world have established air pollution standards to ensure a minimum level of air quality. Precise assessment of the health and socio-economic impacts of air pollution is, however, a complex task;indeed, methods based within an epidemiological tradition generally underestimate human risk of exposure to polluted air. In this study, we introduce an agent-based modeling approach to ascertaining the impact of changes in particulate matter (PM10) on mortality and frequency of hospital visits in the greater metropolitan region of Sydney, Australia. Our modeling approach simulates human movement and behavioral patterns in order to obtain an accurate estimate of individual exposure to a pollutant. Results of our analysis indicate that a 50% reduction in PM10 levels (relative to the baseline) could considerably lower mortality, respiratory hospital admissions and emergency room visits leading to reduced pressure on health care sector costs and placing lower stress on emergency medical facilities. Our analysis also highlights the continued need to avoid significant increases in air pollution in Sydney so that associated health impacts, including health care costs, do not increase.