This paper undertakes an analysis of labour market outcomes among aging population in Indian labour market by using household and personal level characteristics obtained from periodic labour force survey(PLFS)data for...This paper undertakes an analysis of labour market outcomes among aging population in Indian labour market by using household and personal level characteristics obtained from periodic labour force survey(PLFS)data for 2023-2024.It provides an analysis of the association of demographic and household characteristics with probability of choosing either paid-employment or self-employment by applying discrete choice model,after controlling for sample selection bias.By following strategic choice framework,endogenous sample selected probit model is used in finding out the role of different covariates in determining the chance of continuing work in self-employment and wage employment of any type after the age of statutory retirement.Social,economic,and other factors like gender are considered as key factors towards labour market participation of the aging population.This study examines the effects of age and education on decision to choose type of employment by the people beyond their statutory retirement age.The coefficient of female dummy is positive in regular-paid jobs and unpaid household work,but negative for own accounts work and employer irrespective of age cohorts suggesting that women are more likely to continue as regular paid jobs and unpaid household work,but less likely to be employer and own account worker as compared to men even after age 60 years and above.展开更多
The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental ...The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental alloy decreases with the increase of ageing time from 0 to 108 h.The corrosion resistance of the experimental alloy was found to increase with the increase of the size of the precipitate phases.The open circuit potential of the experimental alloy increases with the increase of the ageing time.The potentiodynamic polarization curves show that the cathodic over-potential increases with the increase of ageing time,leading to a decrease in the current density of anodic current plateau with the increase of ageing time.展开更多
Mierostruetural development of a commercial 7055 (Al-Zn-Mg-Cu)alloy is studied by transmission electron mieroseope(TEM) during the process of single-ageing for up to 48 h. It is observed that Guinier-Preston (GP...Mierostruetural development of a commercial 7055 (Al-Zn-Mg-Cu)alloy is studied by transmission electron mieroseope(TEM) during the process of single-ageing for up to 48 h. It is observed that Guinier-Preston (GP) zones are formed on { 111} planes when the sample is aged for a short time and grows up gradually with increase of ageing time. η' phase is formsed after ageing for 4 h at 120℃, having the orientation relationship with the matrix as[0 0 0 1]η'//[1 1^- 1]Al and (1 0 1^- 1)η'//(1 1 0)Al.η phase starts to occur after 24 h ageing and has an orientation relationship with matrix as [1^- 1 0 0]η//[1 1 0]Al and (0 0 0 1)η// (1 1 1)Al. Since the density of both η' phase and η phase particles is much lower than that of GP zone on aged alloy, GP zones are important to control the properties of the alloy.展开更多
A stochastic model of conducting crack propagation is presented to provide a conceptual framework dedicated to the study of the formation of fractal structure of dielectric ageing patterns as a result of a competition...A stochastic model of conducting crack propagation is presented to provide a conceptual framework dedicated to the study of the formation of fractal structure of dielectric ageing patterns as a result of a competition between random fluctuation growth and applied electric strength enhanced deterministic growth. The necessary and sufficient conditions resulting in fractal behaviour in dielectric ageing are found.展开更多
A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiate...A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.展开更多
In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results i...In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results in increased leakage current,decreased breakdown voltage,and lower nonlinearity,ultimately compromising their protective performance.To investigate the evolution in electrical properties during DC aging,this work developed a finite element model based on Voronoi networks and conducted accelerated aging tests on commercial varistors.Throughout the aging process,current-voltage characteristics and Schottky barrier parameters were measured and analyzed.The results indicate that when subjected to constant voltage,current flows through regions with larger grain sizes,forming discharge channels.As aging progresses,the current focus increases on these channels,leading to a decline in the varistor’s overall performance.Furthermore,analysis of the Schottky barrier parameters shows that the changes in electrical performance during aging are non-monotonic.These findings offer theoretical support for understanding the aging mechanisms and condition assessment of modern stable ZnO varistors.展开更多
Aging,mitochondria,and neurodegenerative diseases:Aging is often viewed as the buildup of changes that lead to the gradual transformations associated with getting older,along with a rising likelihood of disease and mo...Aging,mitochondria,and neurodegenerative diseases:Aging is often viewed as the buildup of changes that lead to the gradual transformations associated with getting older,along with a rising likelihood of disease and mortality.Although organis m-wide deterioration is observed during aging,organs with high metabolic demand,such as the brain,are more vulnerable.展开更多
SKI family transcriptional corepressor 1(SKOR1also known as LbxCor1, Fussel15, or CORL1), is a member of the SKI family of proteins and is transcribed from a protein-coding gene located on chromosome 15 in humans, tha...SKI family transcriptional corepressor 1(SKOR1also known as LbxCor1, Fussel15, or CORL1), is a member of the SKI family of proteins and is transcribed from a protein-coding gene located on chromosome 15 in humans, that has a molecular weight of approximately 100 kDa. Skor1 is highly expressed in neurons in the central nervous system of both humans and rodents.展开更多
Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pa...Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia.展开更多
This research aims to understand the psychological, the social and cognitive aspects of ageing and assess the relevance of driving a personal automobile to seniors. We know that biological ageing is an inescapable fac...This research aims to understand the psychological, the social and cognitive aspects of ageing and assess the relevance of driving a personal automobile to seniors. We know that biological ageing is an inescapable fact, but is there also a psychological and a cognitive ageing? If so, is it related to getting older or to other factors? How relevant is continuing to drive to seniors, and how can the activity influence psychological and cognitive types of their ageing and self well-being? To answer these questions, we study several authors and concepts about mental health, development of ageing and their relationship to driving. We also explore psychological and cognitive changes associated with ageing, the principal behavioural changes of healthy senior people (with normal cognitive function) and MCI (mild cognitive impairment), as well as how driving inhibition can induce and affect psychological and cognitive characteristics. We conclude that low mental functioning is caused by a set of biological, psychological and social factors, connected in turn to environmental factors. The slowdown of cognitive activities and performances in seniors is not inevitably accompanied by a decrease in intellectual capacity, low sensory acuity, or slowing psychomotor skills. Other factors should be considered--such as health status, limitations, anxiety, lack of interest, motivation and attitudes. The loss of cognitive abilities and the prevalence of mild cognitive impairment increase with age and are a growing concern, especially among seniors who drive cars. However, we still lack specific evidence based on tests and criteria--in particular, on psychological and cognitive domains--to assess senior drivers actually at risk. It is important to establish a base of evidence to allow objective risk determination. The safest senior drivers should continue driving for as long as possible, thereby contributing to their mental health, independence and quality of life.展开更多
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct...Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.展开更多
The rapidly aging population directly contributes to the increasing cases of neurological disorders.Due to the chronic progressive nature of neurodegeneration,numerous neurological conditions are considered“multifact...The rapidly aging population directly contributes to the increasing cases of neurological disorders.Due to the chronic progressive nature of neurodegeneration,numerous neurological conditions are considered“multifactorial”with systemic metabolic alterations.Even so,treatments for neurological disorders have remained unchanged for the past decades.Recently,metabolic drugs such as metformin and glucagon-like peptide 1 agonists have demonstrated promising health outcomes for neurodegeneration.展开更多
The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu...The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.展开更多
Redox homeostasis is crucial for cellular function,and its disruption is associated with numerous diseases and age-related pathologies.Superoxide(·O_(2)-),a key reactive oxygen species(ROS),functions as a crucial...Redox homeostasis is crucial for cellular function,and its disruption is associated with numerous diseases and age-related pathologies.Superoxide(·O_(2)-),a key reactive oxygen species(ROS),functions as a crucial signaling molecule under normal physiological processes;however,both its excessive accumulation and deficiency can lead to significant detrimental effects on organismal health.Inspired by the natural enzyme superoxide dismutase(SOD),which alleviates oxidative stress by neutralizing excess free radicals and modulates intracellular ROS levels to activate anti-aging pathways,we bioengineered a novel"superoxide buffering formulation"(SOD Buffer)to precisely regulate mitochondrial superoxide levels.Using C.elegans as a model,we show that SOD Buffer reduces superoxide accumulation under oxidative stress(e.g.,UV exposure)and restores superoxide levels under its depletion(e.g.,post-MitoQ treatment),without affecting general ROS level.Mechanistically,SOD Buffer modulates superoxide levels to activate the mitochondrial unfolded protein response(UPR^(mt)),evidenced by the increased HSP-6 expression.This activation is mediated by the transcription regulators ATFS-1 and DVE-1,which govern mitochondrial stress responses.Functionally,SOD Buffer extends average lifespan by 36.98% and improves aging-related behaviors in C.elegans in a UPR^(mt) dependent manner.These findings highlight the therapeutic promise of targeted superoxide modulation to maintain mitochondrial health and promote longevity.展开更多
“Are you dead?”It's not a morbid joke-it's the literal translation of the name of Chinese app Sileme,which went viral around the country in early January.However,amid public controversy over its unsettling c...“Are you dead?”It's not a morbid joke-it's the literal translation of the name of Chinese app Sileme,which went viral around the country in early January.However,amid public controversy over its unsettling connotations,the development team rebranded the app as Demumu on January 14,be-fore it was removed from the app stores of Apple and Android on January 15.展开更多
Adult hippocampal neurogenesis is linked to memory formation in the adult brain,with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons.Abnormal adult ...Adult hippocampal neurogenesis is linked to memory formation in the adult brain,with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons.Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases.Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits.This review aims to expand the current understanding and prospects of targeting neurogenesis in the treatment of cognitive impairment.Recent research indicates the presence of abnormalities in AHN in several diseases associated with cognitive impairment,including cerebrovascular diseases,Alzheimer's disease,aging-related conditions,and issues related to anesthesia and surgery.The role of these abnormalities in the cognitive deficits caused by these diseases has been widely recognized,and targeting AHN is considered a promising approach for treating cognitive impairment.However,the underlying mechanisms of this role are not yet fully understood,and the effectiveness of targeting abnormal adult hippocampal neurogenesis for treatment remains limited,with a need for further development of treatment methods and detection techniques.By reviewing recent studies,we classify the potential mechanisms of adult hippocampal neurogenesis abnormalities into four categories:immunity,energy metabolism,aging,and pathological states.In immunity-related mechanisms,abnormalities in meningeal,brain,and peripheral immunity can disrupt normal adult hippocampal neurogenesis.Lipid metabolism and mitochondrial function disorders are significant energy metabolism factors that lead to abnormal adult hippocampal neurogenesis.During aging,the inflammatory state of the neurogenic niche and the expression of aging-related microRNAs contribute to reduced adult hippocampal neurogenesis and cognitive impairment in older adult patients.Pathological states of the body and emotional disorders may also result in abnormal adult hippocampal neurogenesis.Among the current strategies used to enhance this form of neurogenesis,physical therapies such as exercise,transcutaneous electrical nerve stimulation,and enriched environments have proven effective.Dietary interventions,including energy intake restriction and nutrient optimization,have shown efficacy in both basic research and clinical trials.However,drug treatments,such as antidepressants and stem cell therapy,are primarily reported in basic research,with limited clinical application.The relationship between abnormal adult hippocampal neurogenesis and cognitive impairment has garnered widespread attention,and targeting the former may be an important strategy for treating the latter.However,the mechanisms underlying abnormal adult hippocampal neurogenesis remain unclear,and treatments are lacking.This highlights the need for greater focus on translating research findings into clinical practice.展开更多
Regenerative medicine is a promising therapeutic avenue for previously incurable diseases.As the risk of chronic and degenerative diseases significantly increases with age,the elderly population represents a major coh...Regenerative medicine is a promising therapeutic avenue for previously incurable diseases.As the risk of chronic and degenerative diseases significantly increases with age,the elderly population represents a major cohort for stem cell-based therapies.However,the regenerative potential of stem cells significantly decreases with advanced age and deteriorating health status of the donor.Therefore,the efficacy of autologous stem cell therapy is significantly compromised in older patients.To overcome these limitations,alternative strategies have been used to restore the age-and disease-depleted function of stem cells.These methods aim to restore the therapeutic efficacy of aged stem cells for autologous use.This article explores the effect of donor age and health status on the regenerative potential of stem cells.It further highlights the limitations of stem cell-based therapy for autologous treatment in the elderly.A comprehensive insight into the potential strategies to address the“age”and“disease”compromised regenerative potential of autologous stem cells is also presented.The information provided here serves as a valuable resource for physicians and patients for optimization of stem cellbased autologous therapy for aged patients.展开更多
Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence ...Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence has emerged as a major contributor and driver of this process in the mammalian cell.Cellular senescence is a programmed response to stress and irreparable damage,which drives the cell into an apoptosis-resistant,non-proliferative state.Senescent cells can also deleteriously affect neighboring,non-senescent cells.Senescence is a complex and multifaceted process associated with a wide range of cellular events,including the secretion of pro-inflammatory molecules and the arrest of the cell cycle.展开更多
文摘This paper undertakes an analysis of labour market outcomes among aging population in Indian labour market by using household and personal level characteristics obtained from periodic labour force survey(PLFS)data for 2023-2024.It provides an analysis of the association of demographic and household characteristics with probability of choosing either paid-employment or self-employment by applying discrete choice model,after controlling for sample selection bias.By following strategic choice framework,endogenous sample selected probit model is used in finding out the role of different covariates in determining the chance of continuing work in self-employment and wage employment of any type after the age of statutory retirement.Social,economic,and other factors like gender are considered as key factors towards labour market participation of the aging population.This study examines the effects of age and education on decision to choose type of employment by the people beyond their statutory retirement age.The coefficient of female dummy is positive in regular-paid jobs and unpaid household work,but negative for own accounts work and employer irrespective of age cohorts suggesting that women are more likely to continue as regular paid jobs and unpaid household work,but less likely to be employer and own account worker as compared to men even after age 60 years and above.
基金Project(51074186) supported by the National Natural Science Foundation of China
文摘The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental alloy decreases with the increase of ageing time from 0 to 108 h.The corrosion resistance of the experimental alloy was found to increase with the increase of the size of the precipitate phases.The open circuit potential of the experimental alloy increases with the increase of the ageing time.The potentiodynamic polarization curves show that the cathodic over-potential increases with the increase of ageing time,leading to a decrease in the current density of anodic current plateau with the increase of ageing time.
文摘Mierostruetural development of a commercial 7055 (Al-Zn-Mg-Cu)alloy is studied by transmission electron mieroseope(TEM) during the process of single-ageing for up to 48 h. It is observed that Guinier-Preston (GP) zones are formed on { 111} planes when the sample is aged for a short time and grows up gradually with increase of ageing time. η' phase is formsed after ageing for 4 h at 120℃, having the orientation relationship with the matrix as[0 0 0 1]η'//[1 1^- 1]Al and (1 0 1^- 1)η'//(1 1 0)Al.η phase starts to occur after 24 h ageing and has an orientation relationship with matrix as [1^- 1 0 0]η//[1 1 0]Al and (0 0 0 1)η// (1 1 1)Al. Since the density of both η' phase and η phase particles is much lower than that of GP zone on aged alloy, GP zones are important to control the properties of the alloy.
文摘A stochastic model of conducting crack propagation is presented to provide a conceptual framework dedicated to the study of the formation of fractal structure of dielectric ageing patterns as a result of a competition between random fluctuation growth and applied electric strength enhanced deterministic growth. The necessary and sufficient conditions resulting in fractal behaviour in dielectric ageing are found.
文摘A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.
文摘In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results in increased leakage current,decreased breakdown voltage,and lower nonlinearity,ultimately compromising their protective performance.To investigate the evolution in electrical properties during DC aging,this work developed a finite element model based on Voronoi networks and conducted accelerated aging tests on commercial varistors.Throughout the aging process,current-voltage characteristics and Schottky barrier parameters were measured and analyzed.The results indicate that when subjected to constant voltage,current flows through regions with larger grain sizes,forming discharge channels.As aging progresses,the current focus increases on these channels,leading to a decline in the varistor’s overall performance.Furthermore,analysis of the Schottky barrier parameters shows that the changes in electrical performance during aging are non-monotonic.These findings offer theoretical support for understanding the aging mechanisms and condition assessment of modern stable ZnO varistors.
文摘Aging,mitochondria,and neurodegenerative diseases:Aging is often viewed as the buildup of changes that lead to the gradual transformations associated with getting older,along with a rising likelihood of disease and mortality.Although organis m-wide deterioration is observed during aging,organs with high metabolic demand,such as the brain,are more vulnerable.
基金supported by Science Foundation Ireland (Grant 19/FFP/6666),Cure Parkinson’s (Grant CP:GO01)a PhD studentship from the Anatomical Society。
文摘SKI family transcriptional corepressor 1(SKOR1also known as LbxCor1, Fussel15, or CORL1), is a member of the SKI family of proteins and is transcribed from a protein-coding gene located on chromosome 15 in humans, that has a molecular weight of approximately 100 kDa. Skor1 is highly expressed in neurons in the central nervous system of both humans and rodents.
基金supported by grants from Collaborative Research Fund(Ref:C4032-21GF)General Research Grant(Ref:14114822)+1 种基金Group Research Scheme(Ref:3110146)Area of Excellence(Ref:Ao E/M-402/20)。
文摘Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia.
文摘This research aims to understand the psychological, the social and cognitive aspects of ageing and assess the relevance of driving a personal automobile to seniors. We know that biological ageing is an inescapable fact, but is there also a psychological and a cognitive ageing? If so, is it related to getting older or to other factors? How relevant is continuing to drive to seniors, and how can the activity influence psychological and cognitive types of their ageing and self well-being? To answer these questions, we study several authors and concepts about mental health, development of ageing and their relationship to driving. We also explore psychological and cognitive changes associated with ageing, the principal behavioural changes of healthy senior people (with normal cognitive function) and MCI (mild cognitive impairment), as well as how driving inhibition can induce and affect psychological and cognitive characteristics. We conclude that low mental functioning is caused by a set of biological, psychological and social factors, connected in turn to environmental factors. The slowdown of cognitive activities and performances in seniors is not inevitably accompanied by a decrease in intellectual capacity, low sensory acuity, or slowing psychomotor skills. Other factors should be considered--such as health status, limitations, anxiety, lack of interest, motivation and attitudes. The loss of cognitive abilities and the prevalence of mild cognitive impairment increase with age and are a growing concern, especially among seniors who drive cars. However, we still lack specific evidence based on tests and criteria--in particular, on psychological and cognitive domains--to assess senior drivers actually at risk. It is important to establish a base of evidence to allow objective risk determination. The safest senior drivers should continue driving for as long as possible, thereby contributing to their mental health, independence and quality of life.
基金supported by Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korea Government(MOTIE)(RS-2022-00154720,Technology Innovation Program Development of next-generation power semiconductor based on Si-on-SiC structure)the National Research Foundation of Korea(NRF)by the Korea government(RS-2023-NR076826)Global-Learning&Academic Research Institution for Master's·PhD students,and Postdocs(LAMP)Program of the National Research Foundation of Korea(NRF)by the Ministry of Education(No.RS-2024-00443714).
文摘Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.
文摘The rapidly aging population directly contributes to the increasing cases of neurological disorders.Due to the chronic progressive nature of neurodegeneration,numerous neurological conditions are considered“multifactorial”with systemic metabolic alterations.Even so,treatments for neurological disorders have remained unchanged for the past decades.Recently,metabolic drugs such as metformin and glucagon-like peptide 1 agonists have demonstrated promising health outcomes for neurodegeneration.
基金financially supported by the Natural Science Foundation of Liaoning Province of China(2022-MS-109)the Key Research and Development Program of Liaoning Province(2023JH2/101800045)the Ministry of Science and Technology of the Peoples Republic of China(ZZ2021006).
文摘The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.
基金supported by the National Key R&D Program of China(No.2022YFA1205801)the National Natural Science Foundation of China(Nos.T2225026 and 82172087)+1 种基金the Beijing Institute of Technology Research Fund Program for Young Scholars,Innovative Group Cultivation Project for Basic Medicine(No.CX25XT03)Laboratory for Clinical Medicine,Capital Medical University.
文摘Redox homeostasis is crucial for cellular function,and its disruption is associated with numerous diseases and age-related pathologies.Superoxide(·O_(2)-),a key reactive oxygen species(ROS),functions as a crucial signaling molecule under normal physiological processes;however,both its excessive accumulation and deficiency can lead to significant detrimental effects on organismal health.Inspired by the natural enzyme superoxide dismutase(SOD),which alleviates oxidative stress by neutralizing excess free radicals and modulates intracellular ROS levels to activate anti-aging pathways,we bioengineered a novel"superoxide buffering formulation"(SOD Buffer)to precisely regulate mitochondrial superoxide levels.Using C.elegans as a model,we show that SOD Buffer reduces superoxide accumulation under oxidative stress(e.g.,UV exposure)and restores superoxide levels under its depletion(e.g.,post-MitoQ treatment),without affecting general ROS level.Mechanistically,SOD Buffer modulates superoxide levels to activate the mitochondrial unfolded protein response(UPR^(mt)),evidenced by the increased HSP-6 expression.This activation is mediated by the transcription regulators ATFS-1 and DVE-1,which govern mitochondrial stress responses.Functionally,SOD Buffer extends average lifespan by 36.98% and improves aging-related behaviors in C.elegans in a UPR^(mt) dependent manner.These findings highlight the therapeutic promise of targeted superoxide modulation to maintain mitochondrial health and promote longevity.
文摘“Are you dead?”It's not a morbid joke-it's the literal translation of the name of Chinese app Sileme,which went viral around the country in early January.However,amid public controversy over its unsettling connotations,the development team rebranded the app as Demumu on January 14,be-fore it was removed from the app stores of Apple and Android on January 15.
基金supported by Technological Innovation 2030-Major Projects of“Brain Science and Brain-like Research,”No.2022ZD0206200(to XG)the National Natural Science Foundation of China,No.82371245(to SJ),82102246(to XD),81701092(to XG)+2 种基金the Natural Science Foundation of Shandong Province,No.ZR2020MH129(to SJ)Shanghai Municipal Key Clinical Specialty,No.shslczdzk03601Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation,No.20DZ2254200。
文摘Adult hippocampal neurogenesis is linked to memory formation in the adult brain,with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons.Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases.Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits.This review aims to expand the current understanding and prospects of targeting neurogenesis in the treatment of cognitive impairment.Recent research indicates the presence of abnormalities in AHN in several diseases associated with cognitive impairment,including cerebrovascular diseases,Alzheimer's disease,aging-related conditions,and issues related to anesthesia and surgery.The role of these abnormalities in the cognitive deficits caused by these diseases has been widely recognized,and targeting AHN is considered a promising approach for treating cognitive impairment.However,the underlying mechanisms of this role are not yet fully understood,and the effectiveness of targeting abnormal adult hippocampal neurogenesis for treatment remains limited,with a need for further development of treatment methods and detection techniques.By reviewing recent studies,we classify the potential mechanisms of adult hippocampal neurogenesis abnormalities into four categories:immunity,energy metabolism,aging,and pathological states.In immunity-related mechanisms,abnormalities in meningeal,brain,and peripheral immunity can disrupt normal adult hippocampal neurogenesis.Lipid metabolism and mitochondrial function disorders are significant energy metabolism factors that lead to abnormal adult hippocampal neurogenesis.During aging,the inflammatory state of the neurogenic niche and the expression of aging-related microRNAs contribute to reduced adult hippocampal neurogenesis and cognitive impairment in older adult patients.Pathological states of the body and emotional disorders may also result in abnormal adult hippocampal neurogenesis.Among the current strategies used to enhance this form of neurogenesis,physical therapies such as exercise,transcutaneous electrical nerve stimulation,and enriched environments have proven effective.Dietary interventions,including energy intake restriction and nutrient optimization,have shown efficacy in both basic research and clinical trials.However,drug treatments,such as antidepressants and stem cell therapy,are primarily reported in basic research,with limited clinical application.The relationship between abnormal adult hippocampal neurogenesis and cognitive impairment has garnered widespread attention,and targeting the former may be an important strategy for treating the latter.However,the mechanisms underlying abnormal adult hippocampal neurogenesis remain unclear,and treatments are lacking.This highlights the need for greater focus on translating research findings into clinical practice.
文摘Regenerative medicine is a promising therapeutic avenue for previously incurable diseases.As the risk of chronic and degenerative diseases significantly increases with age,the elderly population represents a major cohort for stem cell-based therapies.However,the regenerative potential of stem cells significantly decreases with advanced age and deteriorating health status of the donor.Therefore,the efficacy of autologous stem cell therapy is significantly compromised in older patients.To overcome these limitations,alternative strategies have been used to restore the age-and disease-depleted function of stem cells.These methods aim to restore the therapeutic efficacy of aged stem cells for autologous use.This article explores the effect of donor age and health status on the regenerative potential of stem cells.It further highlights the limitations of stem cell-based therapy for autologous treatment in the elderly.A comprehensive insight into the potential strategies to address the“age”and“disease”compromised regenerative potential of autologous stem cells is also presented.The information provided here serves as a valuable resource for physicians and patients for optimization of stem cellbased autologous therapy for aged patients.
文摘Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence has emerged as a major contributor and driver of this process in the mammalian cell.Cellular senescence is a programmed response to stress and irreparable damage,which drives the cell into an apoptosis-resistant,non-proliferative state.Senescent cells can also deleteriously affect neighboring,non-senescent cells.Senescence is a complex and multifaceted process associated with a wide range of cellular events,including the secretion of pro-inflammatory molecules and the arrest of the cell cycle.