Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMO...Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMOS)technology still suffer from substantially larger energy consumption than biological synapses,due to the slow kinetics of forming conductive paths inside the memristive units.Here we report wafer-scale Ag_(2)S-based MCAs realized using CMOS-compatible processes at temperatures below 160℃.Ag_(2)S electrolytes supply highly mobile Ag+ions,and provide the Ag/Ag_(2)S interface with low silver nucleation barrier to form silver filaments at low energy costs.By further enhancing Ag+migration in Ag_(2)S electrolytes via microstructure modulation,the integrated memristors exhibit a record low threshold of approximately−0.1 V,and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses.The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics.Moreover,the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm.An impressive accuracy of 92.6%in image recognition simulations is demonstrated with the MCAs after the compensation.The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.展开更多
Ag vacancies have been shown to regulate the thermoelectric properties of Ag_(2)S.However,their effect on the mechanical properties of Ag_(2)S remains unclear.In this study,Ag_(2)S-based samples with various Ag vacanc...Ag vacancies have been shown to regulate the thermoelectric properties of Ag_(2)S.However,their effect on the mechanical properties of Ag_(2)S remains unclear.In this study,Ag_(2)S-based samples with various Ag vacancy concentration were prepared,and their mechanical properties were investigated experimentally and theoretically.Both the bending strength and fracture strain decrease with increasing Ag vacancy concentration.Moreover,the dimple size on the fracture surfaces of the samples gradually reduces with increasing Ag vacancy concentration,further confirming the reduction in material ductility.Density functional theory results reveal that Ag vacancies lead to the disruption of Ag–S bonds in Ag_(2)S at low ultimate strains,consequently causing a simultaneous reduction in both strength and deformability,which agrees reasonably well with the experimental observations.This work provides new insights into the effect of vacancies on the mechanical properties of Ag_(2)S materials,which could guide the design of fast ionic thermoelectric materials.展开更多
Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/...Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/BiFeO_(3)(AAS/BFO),for photocatalytic degradation of ciprofloxacin from water.Experimental results verified the enhancement of combining heterostructure piezoelectric polarization effect,which promotes efficient migration and separation of photogenerated carriers due to the localized surface plasmon resonance effect of Ag nanoparticles.Additionally,the introduction of Ag_(2)S constructs a new heterostructure,that enhances the electron transport rate and improves the separation efficiency on electron-hole pairs.Under ultrasonic stimulation and visible light irradiation,the degradation efficiencies of 15%-AAS/BFO towards ciprofloxacin,methyl orange and methylene blue are significantly enhanced compared to pure BFO fibers.The demonstrated AAS/BFO material based on the synergistic piezoelectric effect and plasmon heterostructure shows potential in efficient organic pollutants water treatment and transforming mechanical energy into chemical energy.展开更多
Here,Ag2S nanoparticles on reduced graphene oxide(Ag2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag2S NPs/RGO via a facile hydrothermal ...Here,Ag2S nanoparticles on reduced graphene oxide(Ag2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag2S NPs is also rich with metal center Ag(δ^+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag2S NPs;and(3) electron transfer from RGO to Ag2S NPs,facilitating the uptake of electrons by 4-NP molecules.展开更多
In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)an...In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.展开更多
Although many plasmonic nanosenosrs have been established for the detection of mercury(Ⅱ)(Hg^(2+)),few of them is feasible for analyzing natural samples with very complex matrices because of insufficient method selec...Although many plasmonic nanosenosrs have been established for the detection of mercury(Ⅱ)(Hg^(2+)),few of them is feasible for analyzing natural samples with very complex matrices because of insufficient method selectivity.To address this challenge,we propose an epitaxial and lattice-mismatch approach to the synthesis of a unique Au/Ag_(2)S dimeric nanostructure,which consists of an Au segment with excellent plasmonic characteristics,and a highly stable Ag_(2)S portion with minimum solubility product (K_(sp)(Ag_(2)S)=6.3×10^(-50)).The detection relies on the chemical conversion of Ag_(2)S to HgS when reacting with Hg^(2+),resulting in a red shift in the absorption band of the connecting Au NPs.The concurrent color changes of the solution from gray purple to dark green and finally to navy correlate well with Hg^(2+)concentration,thus enables UV-vis quantitation and a naked-eye readout of the Hg^(2+)concentration.This method exhibits superior selectivity towards Hg^(2+) over other interfering ions tested because Hg^(2+) is the only ion that can react with Ag_(2)S to form HgS with even smaller solubility product (K_(sp)(HgS)=4×10^(-53)).The detection limit of this method is 1.21μmol/L,calculated by the signal-to-noise of 3.The practicability of the method was verified by analyzing the Hg^(2+)in sewage water samples without sample pretreatment with satisfactory recoveries (93.1%-102.8%) and relative standard deviations (1.38%-2.89%).We believe this method holds great potential for on-the-spot detection of Hg^(2+) in environmental water samples with complex matrices.展开更多
基金supported by the Swedish Strategic Research Foundation(SSF FFL15-0174 to Zhen Zhang)the Swedish Research Council(VR 2018-06030 and 2019-04690 to Zhen Zhang)+1 种基金the Wallenberg Academy Fellow Extension Program(KAW 2020-0190 to Zhen Zhang)the Olle Engkvist Foundation(Postdoc grant 214-0322 to Zhen Zhang).
文摘Memristive crossbar arrays(MCAs)offer parallel data storage and processing for energy-efficient neuromorphic computing.However,most wafer-scale MCAs that are compatible with complementary metal-oxide-semiconductor(CMOS)technology still suffer from substantially larger energy consumption than biological synapses,due to the slow kinetics of forming conductive paths inside the memristive units.Here we report wafer-scale Ag_(2)S-based MCAs realized using CMOS-compatible processes at temperatures below 160℃.Ag_(2)S electrolytes supply highly mobile Ag+ions,and provide the Ag/Ag_(2)S interface with low silver nucleation barrier to form silver filaments at low energy costs.By further enhancing Ag+migration in Ag_(2)S electrolytes via microstructure modulation,the integrated memristors exhibit a record low threshold of approximately−0.1 V,and demonstrate ultra-low switching-energies reaching femtojoule values as observed in biological synapses.The low-temperature process also enables MCA integration on polyimide substrates for applications in flexible electronics.Moreover,the intrinsic nonidealities of the memristive units for deep learning can be compensated by employing an advanced training algorithm.An impressive accuracy of 92.6%in image recognition simulations is demonstrated with the MCAs after the compensation.The demonstrated MCAs provide a promising device option for neuromorphic computing with ultra-high energy-efficiency.
基金supported by the National Natural Science Foundation of China(Nos.52171220 and 92163119)the Natural Science Foundation of Hubei Province of China(Grant No.20231j0224)the Fundamental Research Funds for the Central Universities(WUT:104972024KFYjc0058).
文摘Ag vacancies have been shown to regulate the thermoelectric properties of Ag_(2)S.However,their effect on the mechanical properties of Ag_(2)S remains unclear.In this study,Ag_(2)S-based samples with various Ag vacancy concentration were prepared,and their mechanical properties were investigated experimentally and theoretically.Both the bending strength and fracture strain decrease with increasing Ag vacancy concentration.Moreover,the dimple size on the fracture surfaces of the samples gradually reduces with increasing Ag vacancy concentration,further confirming the reduction in material ductility.Density functional theory results reveal that Ag vacancies lead to the disruption of Ag–S bonds in Ag_(2)S at low ultimate strains,consequently causing a simultaneous reduction in both strength and deformability,which agrees reasonably well with the experimental observations.This work provides new insights into the effect of vacancies on the mechanical properties of Ag_(2)S materials,which could guide the design of fast ionic thermoelectric materials.
基金supported by the National Natural Science Foundation of China(Nos.52372090 and 52073177)the National Natural Science Foundation of Guangdong,China(No.2023A1515010947)Shenzhen Basic Research Program(No.JCYJ20220531102207017).
文摘Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/BiFeO_(3)(AAS/BFO),for photocatalytic degradation of ciprofloxacin from water.Experimental results verified the enhancement of combining heterostructure piezoelectric polarization effect,which promotes efficient migration and separation of photogenerated carriers due to the localized surface plasmon resonance effect of Ag nanoparticles.Additionally,the introduction of Ag_(2)S constructs a new heterostructure,that enhances the electron transport rate and improves the separation efficiency on electron-hole pairs.Under ultrasonic stimulation and visible light irradiation,the degradation efficiencies of 15%-AAS/BFO towards ciprofloxacin,methyl orange and methylene blue are significantly enhanced compared to pure BFO fibers.The demonstrated AAS/BFO material based on the synergistic piezoelectric effect and plasmon heterostructure shows potential in efficient organic pollutants water treatment and transforming mechanical energy into chemical energy.
文摘Here,Ag2S nanoparticles on reduced graphene oxide(Ag2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag2S NPs is also rich with metal center Ag(δ^+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag2S NPs;and(3) electron transfer from RGO to Ag2S NPs,facilitating the uptake of electrons by 4-NP molecules.
基金financially supported by National Natural Science Foundation of China (Grant No. 22172144)Nature Science Foundation of Zhejiang Province (Grant No. LY20B030004)。
文摘In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.
基金supported by the National Natural Science Foundation of China(No.21876206)the Key Fundamental Project of Shandong Natural Science Foundation(No.ZR2020ZD13)+1 种基金the Science and Technology Projects of Qingdao(No.21–1–4-sf-7-nsh)the Youth Innovation and Technology project of Universities in Shandong Province(No.2020KJC007)。
文摘Although many plasmonic nanosenosrs have been established for the detection of mercury(Ⅱ)(Hg^(2+)),few of them is feasible for analyzing natural samples with very complex matrices because of insufficient method selectivity.To address this challenge,we propose an epitaxial and lattice-mismatch approach to the synthesis of a unique Au/Ag_(2)S dimeric nanostructure,which consists of an Au segment with excellent plasmonic characteristics,and a highly stable Ag_(2)S portion with minimum solubility product (K_(sp)(Ag_(2)S)=6.3×10^(-50)).The detection relies on the chemical conversion of Ag_(2)S to HgS when reacting with Hg^(2+),resulting in a red shift in the absorption band of the connecting Au NPs.The concurrent color changes of the solution from gray purple to dark green and finally to navy correlate well with Hg^(2+)concentration,thus enables UV-vis quantitation and a naked-eye readout of the Hg^(2+)concentration.This method exhibits superior selectivity towards Hg^(2+) over other interfering ions tested because Hg^(2+) is the only ion that can react with Ag_(2)S to form HgS with even smaller solubility product (K_(sp)(HgS)=4×10^(-53)).The detection limit of this method is 1.21μmol/L,calculated by the signal-to-noise of 3.The practicability of the method was verified by analyzing the Hg^(2+)in sewage water samples without sample pretreatment with satisfactory recoveries (93.1%-102.8%) and relative standard deviations (1.38%-2.89%).We believe this method holds great potential for on-the-spot detection of Hg^(2+) in environmental water samples with complex matrices.