In the present work, structure changes during (SiO2) composites have been investigated systematically stretching of isotactic polypropylene (iPP) and iPP/silicon dioxide The or-form crystal structure of both iPP a...In the present work, structure changes during (SiO2) composites have been investigated systematically stretching of isotactic polypropylene (iPP) and iPP/silicon dioxide The or-form crystal structure of both iPP and iPP/SiO2 composites is destroyed and transforms into the mesophase as the samples are stretched at a low temperature (35℃), while stretching at high temperatures (90℃ and 120℃) can restrain the appearance of defects and keep the perfection of crystal structure. FTIR results reveal that the stretching temperatures show no obvious difference of the effect on the orientation of pure iPP, however, the orientation of iPP/SiO2 composites is greatly changed by the tensile temperature. In the case of micron-sized SiO2 particles (average particle diameter d 〉 1 μm), the orientation of the composites is lower than that of pure iPP at all stretching temperatures. The above results suggest that the stretching temperature and the SiO2 particle size have great influence on the structure variation and orientation behavior of iPP/SiO2 composites.展开更多
The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method. Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption. T...The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method. Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption. Their surface area and pore size distributions were evaluated by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The nitrogen adsorption-desorption isotherms associated with adsorption hysteresis of PFSA/SiO2 catalysts were analyzed in detail. The adsorption isotherms of PFSA/SiOe catalysts belonged to Type IV isotherms accompanied by hysteresis loops of Type H1 for PFSA/SiO2 catalysts with content of 5%, 13% and 20% PFSA (PFSA-5, PFSA-13 and PFSA-20), and the hysteresis loop of Type H2 for PFSA/SiO2 catalyst with 40% PFSA content (PFSA-40). It indicated that PFSA-5, PFSA-13 and PFSA-20 catalysts had narrow pore size distributions and the well-defined cylindrical pores, while PFSA-40 catalyst had wide pore size distribution and inkbottle-like pores. The pore structure of PFSA-40 catalyst from the analysis of the hysteresis loop was not in agreement with that from BJH method. As an emendation for evaluation of pore size distributions of PFSA/SiOz catalysts, the comparison plots method was introduced, which was helpful to evaluate the pore structure of PFSA/SiO2 catalysts more factually.展开更多
A series of Al=-(Alq3)l-x granular films is prepared on Si wafer with native oxide layer using co-evaporation technique. Large lateral photovoltaic effect (LPE) is observed, with an optimal LPV sensitivity of 75 m...A series of Al=-(Alq3)l-x granular films is prepared on Si wafer with native oxide layer using co-evaporation technique. Large lateral photovoltaic effect (LPE) is observed, with an optimal LPV sensitivity of 75 mV/mm in x=0.35 sample. The dependence of LPE on temperature and A1 composition is investigated, and the possible mechanism is discussed.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51073004 and 21074141)the China National Funds for Distinguished Young Scientists (No. 50925313)
文摘In the present work, structure changes during (SiO2) composites have been investigated systematically stretching of isotactic polypropylene (iPP) and iPP/silicon dioxide The or-form crystal structure of both iPP and iPP/SiO2 composites is destroyed and transforms into the mesophase as the samples are stretched at a low temperature (35℃), while stretching at high temperatures (90℃ and 120℃) can restrain the appearance of defects and keep the perfection of crystal structure. FTIR results reveal that the stretching temperatures show no obvious difference of the effect on the orientation of pure iPP, however, the orientation of iPP/SiO2 composites is greatly changed by the tensile temperature. In the case of micron-sized SiO2 particles (average particle diameter d 〉 1 μm), the orientation of the composites is lower than that of pure iPP at all stretching temperatures. The above results suggest that the stretching temperature and the SiO2 particle size have great influence on the structure variation and orientation behavior of iPP/SiO2 composites.
基金supported by the National Basic Research Program of China (2003CB615705)Chemistry & Chemical Technology Research Center Plan of Shanghai Huayi Group Company (A200-8608 and A200-80726)
文摘The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method. Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption. Their surface area and pore size distributions were evaluated by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The nitrogen adsorption-desorption isotherms associated with adsorption hysteresis of PFSA/SiO2 catalysts were analyzed in detail. The adsorption isotherms of PFSA/SiOe catalysts belonged to Type IV isotherms accompanied by hysteresis loops of Type H1 for PFSA/SiO2 catalysts with content of 5%, 13% and 20% PFSA (PFSA-5, PFSA-13 and PFSA-20), and the hysteresis loop of Type H2 for PFSA/SiO2 catalyst with 40% PFSA content (PFSA-40). It indicated that PFSA-5, PFSA-13 and PFSA-20 catalysts had narrow pore size distributions and the well-defined cylindrical pores, while PFSA-40 catalyst had wide pore size distribution and inkbottle-like pores. The pore structure of PFSA-40 catalyst from the analysis of the hysteresis loop was not in agreement with that from BJH method. As an emendation for evaluation of pore size distributions of PFSA/SiOz catalysts, the comparison plots method was introduced, which was helpful to evaluate the pore structure of PFSA/SiO2 catalysts more factually.
基金supported by the National Natural Science Foundation of China under Grant No.61076093
文摘A series of Al=-(Alq3)l-x granular films is prepared on Si wafer with native oxide layer using co-evaporation technique. Large lateral photovoltaic effect (LPE) is observed, with an optimal LPV sensitivity of 75 mV/mm in x=0.35 sample. The dependence of LPE on temperature and A1 composition is investigated, and the possible mechanism is discussed.