It is common sense that a phase interface(or grain boundary)could be used to scatter phonons in thermoelectric(TE)materials,resulting in low thermal conductivity(k).However,a large number of impurity phases are always...It is common sense that a phase interface(or grain boundary)could be used to scatter phonons in thermoelectric(TE)materials,resulting in low thermal conductivity(k).However,a large number of impurity phases are always so harmful to the transport of carriers that poor TE performance is obtained.Here,we demonstrate that numerous superior multiphase(AgCuTe,Ag_(−2)Te,copper telluride(Cu_(2)Te and Cu_(2−x)Te),and nickel telluride(NiTe))interfaces with simultaneous strong phonon scattering and weak electron scattering could be realized in AgCuTe-based TE materials.Owing to the similar chemical bonds in these phases,the depletion region at phase interfaces,which acts as carrier scattering centers,could be ignored.Therefore,the power factor(PF)is obviously enhanced from~609 to~832μW·m^(−1)·K^(−2),and k is simultaneously decreased from~0.52 to~0.43 W·m^(−1)·K^(−1) at 636 K.Finally,a peak figure of merit(zT)of~1.23 at 636 K and an average zT(zTavg)of~1.12 in the temperature range of 523–623 K are achieved,which are one of the best values among the AgCuTe-based TE materials.This study could provide new guidance to enhance the performance by designing superior multiphase interfaces in the TE materials.展开更多
Cu_(2)Te-based materials are a type of superionic conductor belonging to the class of phonon-liquid elec-tron-crystal materials and have achieved high ZT values by doping and nanostructuring.However,it is easy to form...Cu_(2)Te-based materials are a type of superionic conductor belonging to the class of phonon-liquid elec-tron-crystal materials and have achieved high ZT values by doping and nanostructuring.However,it is easy to form copper vacancies in Cu_(2)Te which leads to an excessive carrier concentration and then results in a low Seebeck coefficient.Hence,controlling copper ion migration and optimizing carrier concen-tration is essential to improve the thermoelectric performance of Cu_(2)Te.This paper reports high-performance Cu_(2)TeeAg_(2)Te composite with high application value in the low-middle temperature re-gion,which is achieved by fine tuning the carrier concentration using Fe addition and non-stoichiometric Te,as well as controlling the thermal conductivity of composite.A high ZT of~1.2 is obtained in AgCu_(0.97)Fe_(0.03)Te_(0.96)at a low temperature of 573 K.Meanwhile,the phase transition mechanism of Cu_(2)TeeAg_(2)Te and its effect on the thermoelectric transport performance are revealed that go beyond nanostructuring and single-doping,which provides a strong theoretical basis for research and perfor-mance improvement of thermoelectric materials in this system.展开更多
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52262032,52273285,51961011,52061009,and U21A2054)the National Key R&D Program of China(Grant No.2022YFE0119100)。
文摘It is common sense that a phase interface(or grain boundary)could be used to scatter phonons in thermoelectric(TE)materials,resulting in low thermal conductivity(k).However,a large number of impurity phases are always so harmful to the transport of carriers that poor TE performance is obtained.Here,we demonstrate that numerous superior multiphase(AgCuTe,Ag_(−2)Te,copper telluride(Cu_(2)Te and Cu_(2−x)Te),and nickel telluride(NiTe))interfaces with simultaneous strong phonon scattering and weak electron scattering could be realized in AgCuTe-based TE materials.Owing to the similar chemical bonds in these phases,the depletion region at phase interfaces,which acts as carrier scattering centers,could be ignored.Therefore,the power factor(PF)is obviously enhanced from~609 to~832μW·m^(−1)·K^(−2),and k is simultaneously decreased from~0.52 to~0.43 W·m^(−1)·K^(−1) at 636 K.Finally,a peak figure of merit(zT)of~1.23 at 636 K and an average zT(zTavg)of~1.12 in the temperature range of 523–623 K are achieved,which are one of the best values among the AgCuTe-based TE materials.This study could provide new guidance to enhance the performance by designing superior multiphase interfaces in the TE materials.
基金supported by National Natural Science Foundation of China(No.52061034 and 51971052)Natural Science Foundation of Inner Mongolia(No.2021LHBS05001)+2 种基金Research Program of science and technology in Universities of Inner Mongolia Autonomous Region(No.NJZY21325)Youth Science and Technology Talents Support Project of Inner Mongolia Autonomous Region(No.NJYT23002)the Liaoning Revitalization Talents Program(No.XLYC2007183).
文摘Cu_(2)Te-based materials are a type of superionic conductor belonging to the class of phonon-liquid elec-tron-crystal materials and have achieved high ZT values by doping and nanostructuring.However,it is easy to form copper vacancies in Cu_(2)Te which leads to an excessive carrier concentration and then results in a low Seebeck coefficient.Hence,controlling copper ion migration and optimizing carrier concen-tration is essential to improve the thermoelectric performance of Cu_(2)Te.This paper reports high-performance Cu_(2)TeeAg_(2)Te composite with high application value in the low-middle temperature re-gion,which is achieved by fine tuning the carrier concentration using Fe addition and non-stoichiometric Te,as well as controlling the thermal conductivity of composite.A high ZT of~1.2 is obtained in AgCu_(0.97)Fe_(0.03)Te_(0.96)at a low temperature of 573 K.Meanwhile,the phase transition mechanism of Cu_(2)TeeAg_(2)Te and its effect on the thermoelectric transport performance are revealed that go beyond nanostructuring and single-doping,which provides a strong theoretical basis for research and perfor-mance improvement of thermoelectric materials in this system.