Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corro...Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.展开更多
Ag3PO4has good potential for use in photocatalytic degradation of organic contaminants.However,the activity and stability of Ag3PO4is hard to sustain because of photocorrosion and the positive potential of the conduct...Ag3PO4has good potential for use in photocatalytic degradation of organic contaminants.However,the activity and stability of Ag3PO4is hard to sustain because of photocorrosion and the positive potential of the conduction band of Ag3PO4.In this study,A composite consisting of Bi2WO6nanosheets and Ag3PO4was developed to curb recombination of charge carriers and enhance the activity and stability of the catalyst.Formation of a Ag3PO4/Bi2WO6composite was confirmed using X‐ray diffraction,energy‐dispersive X‐ray spectroscopy,and X‐ray photoelectron spectroscopy.Photoluminescence spectroscopy provided convincing evidence that compositing Bi2WO6with Ag3PO4effectively reduced photocorrosion of Ag3PO4.The Ag3PO4/Bi2WO6composite gave a high photocatalytic performance in photodegradation of methylene blue.A degradation rate of0.61min?1was achieved;this is1.3and6.0times higher than those achieved using Ag3PO4(0.47min?1)and Bi2WO6(0.10min?1),respectively.Reactive species trapping experiments using the Ag3PO4/Bi2WO6composite showed that holes,?OH,and?O2?all played specific roles in the photodegradation process.The photocatalytic mechanism was investigated and a Z‐scheme was proposed as a plausible mechanism.展开更多
Nano TiO2/Fe3O4 composite particles with different molar ratios of TiO2 to Fe3O4 were prepared via sol-gel method. X-ray diffraction, transmission electron microscopy, and vibration sample magnetometry were used to ch...Nano TiO2/Fe3O4 composite particles with different molar ratios of TiO2 to Fe3O4 were prepared via sol-gel method. X-ray diffraction, transmission electron microscopy, and vibration sample magnetometry were used to characterize the TiO2/Fe3O4 particles. The photocatalytic activity of the particles was tested by degrading methyl blue solution under UV illumination (254 nm). The results indicate that with the content of TiO2 increasing, the photocatalytic activity of the composite particles enhances, while the magnetism of the particles decreases. When the molar ratio of TiO2 to Fe3O4 is about 8, both the photocatalytic activity and magnetism of the TiO2/Fe3O4 particles are relatively high, and their photocatalytic activity remains well after repeated use.展开更多
The binary Ag3 P04/MIL-125-NH2(AMN-X)composites were synthesized through ion exchange-solution method,and the ternary Ag/Ag3 PO_(4)/MIL-125-NH2(AAMN-X)Z-scheme heterojunctions were prepared via the photo chemical redu...The binary Ag3 P04/MIL-125-NH2(AMN-X)composites were synthesized through ion exchange-solution method,and the ternary Ag/Ag3 PO_(4)/MIL-125-NH2(AAMN-X)Z-scheme heterojunctions were prepared via the photo chemical reduction deposition strategy.The photocatalytic hexavalent chromium(Cr(VI))sequestration over AMN-X and AAMN-X were investigated under visible light.AAMN-120 accomplished superior reduction performance due to that Ag nanoparticles(NPs)act as electrons transfer bridge to enhance the separation efficiency of photogenerated e-h+pairs,in which the reaction rates(k.value)were 2.77 and 124.2 fold higher than those of individual MIL-125-NH2 and Ag3 PO_(4),respectively.The influences of different pH values,small organic acids and coexisting ions on the photocatalytic perfo rmance of AAMN-120 were also investigated.In addition,the AAMN-120 heterojunction expressed great reusability and stability in cycling experiments.The mechanism of photocatalytic Cr(VI)was investigated and verified through photoluminescence(PL),electrochemistry,electron spin resonance(ESR),active species capture,and Pt element deposition experiments.展开更多
In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion metho...In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.展开更多
基金supported by the National Natural Science Foundation of China(51572103 and 51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)the Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.
基金supported by the National Natural Science Foundation of China(51572103,51502106)the Foundation for Young Talents in College of Anhui Province(gxyqZD201751)~~
文摘Ag3PO4has good potential for use in photocatalytic degradation of organic contaminants.However,the activity and stability of Ag3PO4is hard to sustain because of photocorrosion and the positive potential of the conduction band of Ag3PO4.In this study,A composite consisting of Bi2WO6nanosheets and Ag3PO4was developed to curb recombination of charge carriers and enhance the activity and stability of the catalyst.Formation of a Ag3PO4/Bi2WO6composite was confirmed using X‐ray diffraction,energy‐dispersive X‐ray spectroscopy,and X‐ray photoelectron spectroscopy.Photoluminescence spectroscopy provided convincing evidence that compositing Bi2WO6with Ag3PO4effectively reduced photocorrosion of Ag3PO4.The Ag3PO4/Bi2WO6composite gave a high photocatalytic performance in photodegradation of methylene blue.A degradation rate of0.61min?1was achieved;this is1.3and6.0times higher than those achieved using Ag3PO4(0.47min?1)and Bi2WO6(0.10min?1),respectively.Reactive species trapping experiments using the Ag3PO4/Bi2WO6composite showed that holes,?OH,and?O2?all played specific roles in the photodegradation process.The photocatalytic mechanism was investigated and a Z‐scheme was proposed as a plausible mechanism.
基金supported by the National Natural Science Foundation of China (Nos. 50872011, 50402022, and 50672006)the National Basic Research Program of China (No. 2007CB613608)
文摘Nano TiO2/Fe3O4 composite particles with different molar ratios of TiO2 to Fe3O4 were prepared via sol-gel method. X-ray diffraction, transmission electron microscopy, and vibration sample magnetometry were used to characterize the TiO2/Fe3O4 particles. The photocatalytic activity of the particles was tested by degrading methyl blue solution under UV illumination (254 nm). The results indicate that with the content of TiO2 increasing, the photocatalytic activity of the composite particles enhances, while the magnetism of the particles decreases. When the molar ratio of TiO2 to Fe3O4 is about 8, both the photocatalytic activity and magnetism of the TiO2/Fe3O4 particles are relatively high, and their photocatalytic activity remains well after repeated use.
文摘The binary Ag3 P04/MIL-125-NH2(AMN-X)composites were synthesized through ion exchange-solution method,and the ternary Ag/Ag3 PO_(4)/MIL-125-NH2(AAMN-X)Z-scheme heterojunctions were prepared via the photo chemical reduction deposition strategy.The photocatalytic hexavalent chromium(Cr(VI))sequestration over AMN-X and AAMN-X were investigated under visible light.AAMN-120 accomplished superior reduction performance due to that Ag nanoparticles(NPs)act as electrons transfer bridge to enhance the separation efficiency of photogenerated e-h+pairs,in which the reaction rates(k.value)were 2.77 and 124.2 fold higher than those of individual MIL-125-NH2 and Ag3 PO_(4),respectively.The influences of different pH values,small organic acids and coexisting ions on the photocatalytic perfo rmance of AAMN-120 were also investigated.In addition,the AAMN-120 heterojunction expressed great reusability and stability in cycling experiments.The mechanism of photocatalytic Cr(VI)was investigated and verified through photoluminescence(PL),electrochemistry,electron spin resonance(ESR),active species capture,and Pt element deposition experiments.
文摘In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.