Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a ...Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.展开更多
Standard electrode potentials E° of Ag-AgC1 electrode in molality scale and acidity constants of glyeine pK_1° at constant molality of NaCl (1.0 mol·kg^(-1)) in 5 and 15 mass% glucose-water mixed solven...Standard electrode potentials E° of Ag-AgC1 electrode in molality scale and acidity constants of glyeine pK_1° at constant molality of NaCl (1.0 mol·kg^(-1)) in 5 and 15 mass% glucose-water mixed solvents over a range of temperatures from 278.15 to 318.15 K were determined from precise emf measurements.The dependence of acidity constant on temperature is given as a function of the thermodynamic temperature T by an empirical equation, pK_1° =A_1(K/T)-A_2+A_3(T/K).The corresponding thermodynamic quantities of the first dissociation process of glycine were calculated and the effects of both tho solvent and the salt on them were also discussed.展开更多
文摘Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.
基金Project supported by the National Natural Science Foundation of China.
文摘Standard electrode potentials E° of Ag-AgC1 electrode in molality scale and acidity constants of glyeine pK_1° at constant molality of NaCl (1.0 mol·kg^(-1)) in 5 and 15 mass% glucose-water mixed solvents over a range of temperatures from 278.15 to 318.15 K were determined from precise emf measurements.The dependence of acidity constant on temperature is given as a function of the thermodynamic temperature T by an empirical equation, pK_1° =A_1(K/T)-A_2+A_3(T/K).The corresponding thermodynamic quantities of the first dissociation process of glycine were calculated and the effects of both tho solvent and the salt on them were also discussed.