Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phas...Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).展开更多
Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed...Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA.h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA.h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA-h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.展开更多
According to the principle that fiber-like arrangement of reinforcing particles SnO2 paralleling to the direction of current is propitious to the electrical and mechanical performance of the electrical contact materia...According to the principle that fiber-like arrangement of reinforcing particles SnO2 paralleling to the direction of current is propitious to the electrical and mechanical performance of the electrical contact materials, we proposed and reported a novel precursor route used to prepare Ag/SnO,. electrical contact material with fiber- like arrangement of reinforcing nanoparticles. The mechanism for the formation of fiber-like arrangement of rein- forcing nanoparticles in Ag/SnO2 electrical contact material was also discussed. The as-prepared samples were char- acterized by means of scanning electron microscope (SEM), optical microscope (OM), energy-dispersive X-ray spectroscopy (EDX), MHV2000 microhardness test, and double bridge tester. The analysis showed that the as-prepared Ag/SnO,, electrical contact material with fiber-like arrangement of reinforcing nanoparticles exhibits a high elongation of 24 %, a particularly low electrical resistivity of 2.08 μΩ. cm, and low arcing energy, and thus has considerable technical, economical and environmental benefits.展开更多
基金sponsored by the Natural Science Foundation of China (Grant nos. 51775208)the Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)+2 种基金the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing”(No. 2016YFB1100101)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).
基金Project supported by the National Key Basic Research Program of China (Grant No 2007CB310500)the Chinese Ministry of Education (Grant No 705040)the National Natural Science Foundation of China (Grant Nos 90606009, 60571044 and 10774174)
文摘Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA.h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA.h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA-h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.
基金National Major Scientific&Technological Achievement Transformation Project
文摘According to the principle that fiber-like arrangement of reinforcing particles SnO2 paralleling to the direction of current is propitious to the electrical and mechanical performance of the electrical contact materials, we proposed and reported a novel precursor route used to prepare Ag/SnO,. electrical contact material with fiber- like arrangement of reinforcing nanoparticles. The mechanism for the formation of fiber-like arrangement of rein- forcing nanoparticles in Ag/SnO2 electrical contact material was also discussed. The as-prepared samples were char- acterized by means of scanning electron microscope (SEM), optical microscope (OM), energy-dispersive X-ray spectroscopy (EDX), MHV2000 microhardness test, and double bridge tester. The analysis showed that the as-prepared Ag/SnO,, electrical contact material with fiber-like arrangement of reinforcing nanoparticles exhibits a high elongation of 24 %, a particularly low electrical resistivity of 2.08 μΩ. cm, and low arcing energy, and thus has considerable technical, economical and environmental benefits.