INTRODUCTION.On January 7,2025,at 9:05 AM BJT,a MS6.8 earthquake(CENC epicenter:28.50°N,87.45°E)struck Dingri County,Xizang Province(hereinafter referred to as the Dingri mainshock).The inferred moment magni...INTRODUCTION.On January 7,2025,at 9:05 AM BJT,a MS6.8 earthquake(CENC epicenter:28.50°N,87.45°E)struck Dingri County,Xizang Province(hereinafter referred to as the Dingri mainshock).The inferred moment magnitude,based on regional/teleseismic waveform inversion and back-projection,is approximately MW7.1.Focal mechanism solutions,aftershock distribution,and field surveys indicate that the Dingri mainshock was a normal-faulting event,with a nearly north-south strike and a westward-dipping fault plane.展开更多
The December 18,2023,M_(S)6.2 Jishishan earthquake occurred along the northeastern margin of the Qinghai-Xizang Plateau within the Laji-Jishi Shan Fault Zone(LJSFZ),a complex thrust-dominated tectonic belt.To identify...The December 18,2023,M_(S)6.2 Jishishan earthquake occurred along the northeastern margin of the Qinghai-Xizang Plateau within the Laji-Jishi Shan Fault Zone(LJSFZ),a complex thrust-dominated tectonic belt.To identify the seismogenic fault and better understand the regional tectonic framework,we integrated high-resolution Digital Elevation Models(DEMs)derived from GF-7 stereo satellite and Unmanned Aerial Vehicle(UAV)photogrammetry,relocated aftershock sequences,and conducted detailed field investigations.Our results identify four Late Quaternary thrust faults(F1-1 to F1-4),among which the Zhaomuchuan fault(F1-3),a NE-dipping back-thrust,aligns closely with the main-shock and aftershock distribution and exhibits clear Holocene activity.Seismic relocation reveals a NEdipping seismogenic zone at depths of 5-12 km,consistent with a shallow reverse-faulting mechanism under WSW-ENE oblique compression.Structural analysis and cross-sectional profiles suggest that fault F1-3 propagates into a mid-crustal detachment surface,forming a foreland-vergent thrust-nappe system.Importantly,the rupture of this secondary fault,rather than the locked primary boundary fault F1-1,indicates stress transfer and localization within a critically tapered wedge,consistent with global analogs of back-thrust-dominated earthquakes.These findings underscore the seismotectonic complexity of the LJSFZ and highlight the significant seismic hazard posed by subsidiary structures in compressional settings.展开更多
The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive inte...The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive interpretation of deep seismogenic structures.The application of new methods and data in this region is necessary to enhance local seismic hazard analyses.In this study,we used a well-designed machine learning-based earthquake location workflow(LOC-FLOW),which incorporates machine learning phase picking,phase association,absolute location,and double-difference relative location,to process seismic data collected by the Hi-CLIMB and NAMASTE seismic networks.We built a high-precision earthquake catalog of both the quiet-period and aftershock seismicity in this region.The seismicity distribution suggests that the quietperiod seismicity(388 events)was controlled by a mid-crustal ramp and the aftershock seismicity(12,669 events)was controlled by several geological structures of the MHT.The higher-level detail of the catalogs derived from this machine learning method reveal clearer structural characteristics,showing how the flat-ramp geometry and a possible duplex structure affect the depth distribution of the seismic events,and how a tear fault changes this distribution along strike.展开更多
This study addresses gaps in aftershock prediction research by proposing an interpretable hybrid machine learning model that leverages multi-source data.The model overcomes challenges related to the selection of influ...This study addresses gaps in aftershock prediction research by proposing an interpretable hybrid machine learning model that leverages multi-source data.The model overcomes challenges related to the selection of influencing factors,model types,prediction result visualization,and decision mechanism interpretability.It integrates mainshock factors,geological features,site characteristics,and terrain conditions using geospatial information system(GIS)technology.By employing the stacking algorithm to optimize and combine XGBoost and LightGBM models,the proposed model significantly improves the prediction performance.Visualization through aftershock hazard mapping offers a robust tool for aftershock warning.The Shapley additive explanations(SHAP)model is used to explain the decision-making process from both global and local perspectives.Results show that,compared to the optimized XGBoost-CMA_ES and LightGBM-CMA_ES hybrid models,the stacking model achieves area under the curve(AUC)increases of 7.71%and 5.72% on the test set,respectively,with a maximum prediction accuracy of 0.9344.The hazard zoning map identifies high-risk areas mainly around fault lines and near the epicenter.As hazard levels rise,the proportion and density of aftershocks in these areas increase.The SHAP model results highlight the distance to fault as the most critical factor.The study integrates local explanations with on-site investigations,effectively visualizing the contributions of different factors to aftershocks.This research provides new tools and methods for enhancing aftershock warning and response.展开更多
Earthquakes not only release the long-term accumulated stress on the seismogenic fault but may also increase the stress on some surrounding faults or other segments of the seismogenic fault,thereby raising the seismic...Earthquakes not only release the long-term accumulated stress on the seismogenic fault but may also increase the stress on some surrounding faults or other segments of the seismogenic fault,thereby raising the seismic risk on these faults.This study investigates the impact of the April 2,2024,Mw 7.4 earthquake in Hualien,Taiwan,China,on the surrounding faults and aftershocks.We analyze stress-triggering effects by calculating Coulomb stress changes(ΔCFS)using rupture models and focal mechanism data.Historical focal mechanism nodal planes serve as receiver fault parameters forΔCFS calculations.Our findings indicate signifi cant Coulomb stress loading on the Longitudinal Valley fault and Central Range structure due to the mainshock,promoting their seismic activity.Loading effects vary by fault type,with thrust and strike-slip faults experiencing more stress loading than normal and odd faults.Conversely,the rupture’s coseismic slip concentration area shows predominant stress unloading,inhibiting seismic activity in the region.Aftershocks mainly experience increasedΔCFS,suggesting that the stress-triggering induced by the mainshock considerably influences the earthquake sequence evolution.These insights are crucial for understanding aftershock patterns and enhancing seismic hazard assessments.展开更多
The control and management of mining-induced seismic hazards have attracted ever-rising attention,especially in underground longwall coal mines,where continuous mining activities dynamically alter the stress states an...The control and management of mining-induced seismic hazards have attracted ever-rising attention,especially in underground longwall coal mines,where continuous mining activities dynamically alter the stress states and induce seismic events.In this work,the Epidemic Type Aftershock Sequence(ETAS)model was applied to formulate the aftershock catalogue of mining-induced seismicity and investigate the formation of event triggering associated with longwall mining.The conventional Baiesi and Paczuski method(2004)was used to separate longwall mining-induced seismic events into triggered and nontriggered catalogues.The latter catalogue contains both non-triggering(NT)-isolated events that do not trigger subsequent events and NT-parent events of the former catalogue.Statistical properties of triggered events were analysed spatially and temporally.The temporal triggering sequence follows the Omori-Utsu law,where the temporal decay of aftershocks is influenced by the magnitude of NT-parent events in mining-induced seismicity.The spatial distribution of aftershocks follows an inverted U-shaped relationship with distance to their corresponding NT-parent events.The quantitative forecasting of triggered events was performed based on the nonhomogeneous Poisson distribution,which achieved a good consistency with their NT-parent events.Amongst the non-triggered catalogue,NT-isolated events are concentrated ahead of NT-parent events,potentially acting as foreshocks for the latter.展开更多
This paper presents the calibration of Omori’s aftershock occurrence rate model for Turkey and the resulting likelihoods. Aftershock occurrence rate models are used for estimating the probability of an aftershock tha...This paper presents the calibration of Omori’s aftershock occurrence rate model for Turkey and the resulting likelihoods. Aftershock occurrence rate models are used for estimating the probability of an aftershock that exceeds a specific magnitude threshold within a time interval after the mainshock. Critical decisions on the post-earthquake safety of structures directly depend on the aftershock hazard estimated using the occurrence model. It is customary to calibrate models in a region-specific manner. These models depend on rate parameters(a, b, c and p) related to the seismicity characteristics of the investigated region. In this study, the available well-recorded aftershock sequences for a set of Mw ≥ 5.9 mainshock events that were observed in Turkey until 2012 are considered to develop the aftershock occurrence model. Mean estimates of the model parameters identified for Turkey are a =-1.90, b = 1.11, c = 0.05 and p = 1.20. Based on the developed model, aftershock likelihoods are computed for a range of different time intervals and mainshock magnitudes. Also, the sensitivity of aftershock probabilities to the model parameters is investigated. Aftershock occurrence probabilities estimated using the model are expected to be useful for post-earthquake safety evaluations in Turkey.展开更多
To consider the infl uence of aftershocks in engineering design, the correlations between main shocks and aftershocks should be examined, and an aftershock simulation method with main shock ground motions needs to be ...To consider the infl uence of aftershocks in engineering design, the correlations between main shocks and aftershocks should be examined, and an aftershock simulation method with main shock ground motions needs to be developed. In this study, the data on the sequences of main shock–aftershock ground motions and other related parameters were collected. Using these data, correlations between the magnitude, frequency, duration and energy of the main shock–aftershock ground motions were investigated. The results showed that the magnitude of the aftershock can be larger than that of the main shock. The shapes of the Fourier amplitude spectra of main shocks and aftershocks were similar;however, the predominant frequency and high-frequency components of the aftershock tended to be larger. Considering the magnitude diff erence between the main shock and the aftershock, the correlation of durations was explored. Additionally, a new concept, the duration ratio, was defi ned to describe the concentration of seismic energy release, and main shock energy was strongly positively correlated with the energy attenuated during the main shock–aftershock sequence. Finally, based on these results regarding correlation, an aftershock synthesis using recorded main shock ground motions was constructed with the trigonometric series method for seismic design, and some examples are given to analyze the rationality of this synthetic method.展开更多
Based on Gutenberg-Richter's relation,Bath's law,Omori's law and Well's relation of rupture scale,this paper forecasts the temporal decay,total number,possible area and greatest magnitude of strong aftershocks(gr...Based on Gutenberg-Richter's relation,Bath's law,Omori's law and Well's relation of rupture scale,this paper forecasts the temporal decay,total number,possible area and greatest magnitude of strong aftershocks(greater than or equal to M6.0) of the MS8.0 Wenchuan earthquake by using the magnitude and statistical parameters of earthquakes in California area of USA.The number of strong aftershocks,the parameters of Gutenberg-Richter's relation and the modified form of Omori's law are validated based on the relocation data of aftershock sequence of the MS8.0 Wenchuan earthquake.Moreover,the spatio-temporal characteristics and wave energy release of the strong aftershocks(M≥6.0) are analyzed.The result shows that strong aftershocks may occur at the end of local drop and sharp drop on the wave energy release curve.展开更多
We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for cont...We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.展开更多
Based on data of earthquake sequences with Ms≥5.0 in Chinese mainland from 1970 to 2004, for different sequence types and different rupture modes of the main shock, the relationship between aftershock distribution si...Based on data of earthquake sequences with Ms≥5.0 in Chinese mainland from 1970 to 2004, for different sequence types and different rupture modes of the main shock, the relationship between aftershock distribution size R and the magnitude of the main shock Mo has been studied statistically. Considering the rupture mode of the main shock, we give the quantitative statistical relationships between R and Mo under 95% confidence level for different sequence typos. Qualitatively, lgR, the logarithm of the aftershock distribution size, is positively correlative to the M0, but the data distribution is dispersed. Viewing from different sequence typos, the correlation between R and M0 is very weak for isolated earthquake type (lET) sequence, R distributes in the range from 5 to 60 km; For mainshock-aftershock type (MAT), lgR is positively correlative to M0; For multiple main shock type (MMT), the corelation between lgR and M0 is not very obvious when M0≤6.2 and R distributes in the range from 5 to 70 km, while it shows a linear correlation when M0≥6.3. The statistical results also show that the occupational ratios of different sequence types for strike-slip and oblique slip are almost the same. But for dip-slip (mostly are thrust mechanisms), the ratio of MAT is higher than that of IET and MMT. Comparing with previous results, it indicates that, when M0 is large enough, R is mainly determined by M0 and there is almost no relationship with the rupture mode of the main shock.展开更多
We obtained a catalog of early aftershocks of the 2013 Lushan earthquake by examining waveform from a nearby station MDS which is 30.2 km far away from the epicenter, and then we analyzed the relation between aftersho...We obtained a catalog of early aftershocks of the 2013 Lushan earthquake by examining waveform from a nearby station MDS which is 30.2 km far away from the epicenter, and then we analyzed the relation between aftershock rate and time. We used time-window ratio method to identify aftershocks from continuous waveform data and compare the result with the catalog provided by China Earthquake Networks Center (CENC). As expected, a significant amount of earthquakes is missing in CENC catalog in the 24 h after the main shock. Moreover, we observed a steady seismicity rate of aftershocks nearly in the first 10,000 s before an obvious power-law decay of aftershock activity. We consider this distinct early stage which does not fit the Omori law with a constant p (p - 1) value as early aftershock deficiency (EAD), as proposed by previous studies. Our study suggests that the main shock rupture process is different from aftershocks' processes, and EAD can vary in different cases as compared to earthquakes of strike-slip mechanism in California.展开更多
Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequen...Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field.展开更多
Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide boreho...Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide borehole information,and correspondingly,do not assign the site classes yet.In this paper,site classification methodologies for free-field strong motion stations are reviewed and the limitations and uncertainties of the horizontal-to-vertical spectral ratio(HVSR) methods are discussed.Then,a new method for site classification based on the entropy weight theory is proposed.The proposed method avoids the head or tail joggle phenomenon by providing the objective and subjective weights.The method was applied to aftershock recordings from the 2008 Wenchuan earthquake,and 54 free-field NSMONS stations were selected for site classification and the mean HVSRs were calculated.The results show that the improved HVSR method proposed in this paper has a higher success rate and could be adopted in NSMONS.展开更多
The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and af...The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.展开更多
Using the double-difference relocation algo- rithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake (Ms 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our res...Using the double-difference relocation algo- rithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake (Ms 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 krn depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-Vp, low-Vs, and high-Poisson's ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might signifi- cantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.展开更多
Previous investigations have shown that the seismic response of slopes during the Wenchuan earthquake was highly variable. The present study tries to give an answer to the question: Which are the main factors affecti...Previous investigations have shown that the seismic response of slopes during the Wenchuan earthquake was highly variable. The present study tries to give an answer to the question: Which are the main factors affecting the seismic response degree of slopes? With the support of the China Geological Survey Bureau, we set 3 monitoring sections in Jiulong slope, Mianzhu city, China with the aim to record the site response of the slope during the affershoeks of the Wenehuan earthquake. After the Wenchuan earthquake, which happened on 12 May 2008, 30 aftershocks have been recorded in these monitoring points. We analyzed 11 records, with magnitudes ranging from ML = 4.6 to ML = 3.1. The amplification factors of the horizontal compound PGA and 3D compound PGA have been determined for the 3 points at different elevations on the slope. Results showed that the dynamic response of the slope on the earthquake was controlled by factors such as topography and the thickness of the Quaternary overburden.展开更多
Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread con- cerns, especially when these events occur in the source regio...Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread con- cerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M- 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occur- rences are critical to improve hazard assessments.展开更多
Shear wave splitting has been measured from analyzing the three-component digital seismograms recorded at Guiquan station after the 1985 Ms6 1 Luquan earthquake in Yunnan Province. The variations in parameters ofshear...Shear wave splitting has been measured from analyzing the three-component digital seismograms recorded at Guiquan station after the 1985 Ms6 1 Luquan earthquake in Yunnan Province. The variations in parameters ofshear wave splitting with time for over 100 aftershocks have two periods, the local stress Period and the regionalstress period. In the local stress period, there exist two vertical, paralell crack sets intersecting at about (50-60°), both affect on the propagation of S-waves, and the local stress is slightly stronger than the regional stress.With the activity of aftershock going down and the local stress dying away, it is returned to the state of the regional stress in the focal area. The polarizations of the fast split S-wave and their period variations are identicalwith the azimuths and changes of the principal compressive stress axis of focal stress field inferred independentlyfrom earthquake mechanisms, hense, it is interpreted that the shear wave splitting is the effects of anisotropy ofEDA cracks controlled by stress field. The time delay of the slow split S-wave, except the difference betweenthe two periods shows in some examples that it increases in a few hours before an event and decreases in a fewdays after an event on the individual background of period.展开更多
基金supported by the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(No.2021230)supported by the National Natural Science Foundation of China(Nos.41922025,42204062)。
文摘INTRODUCTION.On January 7,2025,at 9:05 AM BJT,a MS6.8 earthquake(CENC epicenter:28.50°N,87.45°E)struck Dingri County,Xizang Province(hereinafter referred to as the Dingri mainshock).The inferred moment magnitude,based on regional/teleseismic waveform inversion and back-projection,is approximately MW7.1.Focal mechanism solutions,aftershock distribution,and field surveys indicate that the Dingri mainshock was a normal-faulting event,with a nearly north-south strike and a westward-dipping fault plane.
基金supported by the National Natural Science Foundation of China(Grant No.42277152,42041006)the Fundamental Research Funds for the Central Universities,Chang'an University(300102262910)+2 种基金supported by the International Science and Technology Cooperation Program of China(202406560140)Shaanxi Province Science and Technology Innovation Team(Ref.2021TD-51)the innovation team of Shaanxi Provincial Tri-Qin Scholars with Geoscience Big Data and Geohazard Prevention(2022)。
文摘The December 18,2023,M_(S)6.2 Jishishan earthquake occurred along the northeastern margin of the Qinghai-Xizang Plateau within the Laji-Jishi Shan Fault Zone(LJSFZ),a complex thrust-dominated tectonic belt.To identify the seismogenic fault and better understand the regional tectonic framework,we integrated high-resolution Digital Elevation Models(DEMs)derived from GF-7 stereo satellite and Unmanned Aerial Vehicle(UAV)photogrammetry,relocated aftershock sequences,and conducted detailed field investigations.Our results identify four Late Quaternary thrust faults(F1-1 to F1-4),among which the Zhaomuchuan fault(F1-3),a NE-dipping back-thrust,aligns closely with the main-shock and aftershock distribution and exhibits clear Holocene activity.Seismic relocation reveals a NEdipping seismogenic zone at depths of 5-12 km,consistent with a shallow reverse-faulting mechanism under WSW-ENE oblique compression.Structural analysis and cross-sectional profiles suggest that fault F1-3 propagates into a mid-crustal detachment surface,forming a foreland-vergent thrust-nappe system.Importantly,the rupture of this secondary fault,rather than the locked primary boundary fault F1-1,indicates stress transfer and localization within a critically tapered wedge,consistent with global analogs of back-thrust-dominated earthquakes.These findings underscore the seismotectonic complexity of the LJSFZ and highlight the significant seismic hazard posed by subsidiary structures in compressional settings.
基金funded by the National Key R&D Program of China(2022YFF0800601)National Natural Science Foundation of China(42174069,U1939204).
文摘The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive interpretation of deep seismogenic structures.The application of new methods and data in this region is necessary to enhance local seismic hazard analyses.In this study,we used a well-designed machine learning-based earthquake location workflow(LOC-FLOW),which incorporates machine learning phase picking,phase association,absolute location,and double-difference relative location,to process seismic data collected by the Hi-CLIMB and NAMASTE seismic networks.We built a high-precision earthquake catalog of both the quiet-period and aftershock seismicity in this region.The seismicity distribution suggests that the quietperiod seismicity(388 events)was controlled by a mid-crustal ramp and the aftershock seismicity(12,669 events)was controlled by several geological structures of the MHT.The higher-level detail of the catalogs derived from this machine learning method reveal clearer structural characteristics,showing how the flat-ramp geometry and a possible duplex structure affect the depth distribution of the seismic events,and how a tear fault changes this distribution along strike.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3007203).
文摘This study addresses gaps in aftershock prediction research by proposing an interpretable hybrid machine learning model that leverages multi-source data.The model overcomes challenges related to the selection of influencing factors,model types,prediction result visualization,and decision mechanism interpretability.It integrates mainshock factors,geological features,site characteristics,and terrain conditions using geospatial information system(GIS)technology.By employing the stacking algorithm to optimize and combine XGBoost and LightGBM models,the proposed model significantly improves the prediction performance.Visualization through aftershock hazard mapping offers a robust tool for aftershock warning.The Shapley additive explanations(SHAP)model is used to explain the decision-making process from both global and local perspectives.Results show that,compared to the optimized XGBoost-CMA_ES and LightGBM-CMA_ES hybrid models,the stacking model achieves area under the curve(AUC)increases of 7.71%and 5.72% on the test set,respectively,with a maximum prediction accuracy of 0.9344.The hazard zoning map identifies high-risk areas mainly around fault lines and near the epicenter.As hazard levels rise,the proportion and density of aftershocks in these areas increase.The SHAP model results highlight the distance to fault as the most critical factor.The study integrates local explanations with on-site investigations,effectively visualizing the contributions of different factors to aftershocks.This research provides new tools and methods for enhancing aftershock warning and response.
基金supported by the National Natural Science Foundation of China(42364005,42174074,42064008 and 41704053)Science&Technology Fundamental Resources Investigation Program(Grant No.2023FY201500)+1 种基金Science and Technology Plan Project of Jiangxi Province(20212BCJ23002,20232ACB213013)the East China University of Technology Research Foundation for Advanced Talents(ECUT)(DHBK2019084)。
文摘Earthquakes not only release the long-term accumulated stress on the seismogenic fault but may also increase the stress on some surrounding faults or other segments of the seismogenic fault,thereby raising the seismic risk on these faults.This study investigates the impact of the April 2,2024,Mw 7.4 earthquake in Hualien,Taiwan,China,on the surrounding faults and aftershocks.We analyze stress-triggering effects by calculating Coulomb stress changes(ΔCFS)using rupture models and focal mechanism data.Historical focal mechanism nodal planes serve as receiver fault parameters forΔCFS calculations.Our findings indicate signifi cant Coulomb stress loading on the Longitudinal Valley fault and Central Range structure due to the mainshock,promoting their seismic activity.Loading effects vary by fault type,with thrust and strike-slip faults experiencing more stress loading than normal and odd faults.Conversely,the rupture’s coseismic slip concentration area shows predominant stress unloading,inhibiting seismic activity in the region.Aftershocks mainly experience increasedΔCFS,suggesting that the stress-triggering induced by the mainshock considerably influences the earthquake sequence evolution.These insights are crucial for understanding aftershock patterns and enhancing seismic hazard assessments.
基金support from Australian Research Council(Grant No.LP200301404)support from the Fundamental Research Funds for the Central Universities(Grant No.2020CXNL02)is also much appreciated.
文摘The control and management of mining-induced seismic hazards have attracted ever-rising attention,especially in underground longwall coal mines,where continuous mining activities dynamically alter the stress states and induce seismic events.In this work,the Epidemic Type Aftershock Sequence(ETAS)model was applied to formulate the aftershock catalogue of mining-induced seismicity and investigate the formation of event triggering associated with longwall mining.The conventional Baiesi and Paczuski method(2004)was used to separate longwall mining-induced seismic events into triggered and nontriggered catalogues.The latter catalogue contains both non-triggering(NT)-isolated events that do not trigger subsequent events and NT-parent events of the former catalogue.Statistical properties of triggered events were analysed spatially and temporally.The temporal triggering sequence follows the Omori-Utsu law,where the temporal decay of aftershocks is influenced by the magnitude of NT-parent events in mining-induced seismicity.The spatial distribution of aftershocks follows an inverted U-shaped relationship with distance to their corresponding NT-parent events.The quantitative forecasting of triggered events was performed based on the nonhomogeneous Poisson distribution,which achieved a good consistency with their NT-parent events.Amongst the non-triggered catalogue,NT-isolated events are concentrated ahead of NT-parent events,potentially acting as foreshocks for the latter.
基金Supported by:Scientific and Technological Research Council of Turkey(TUBITAK)with Grant No.213M454
文摘This paper presents the calibration of Omori’s aftershock occurrence rate model for Turkey and the resulting likelihoods. Aftershock occurrence rate models are used for estimating the probability of an aftershock that exceeds a specific magnitude threshold within a time interval after the mainshock. Critical decisions on the post-earthquake safety of structures directly depend on the aftershock hazard estimated using the occurrence model. It is customary to calibrate models in a region-specific manner. These models depend on rate parameters(a, b, c and p) related to the seismicity characteristics of the investigated region. In this study, the available well-recorded aftershock sequences for a set of Mw ≥ 5.9 mainshock events that were observed in Turkey until 2012 are considered to develop the aftershock occurrence model. Mean estimates of the model parameters identified for Turkey are a =-1.90, b = 1.11, c = 0.05 and p = 1.20. Based on the developed model, aftershock likelihoods are computed for a range of different time intervals and mainshock magnitudes. Also, the sensitivity of aftershock probabilities to the model parameters is investigated. Aftershock occurrence probabilities estimated using the model are expected to be useful for post-earthquake safety evaluations in Turkey.
基金National Nature Science Foundation of China under Grant No.51778183the National Science Foundation for Distinguished Young Scholars of China under Grant No.51525802
文摘To consider the infl uence of aftershocks in engineering design, the correlations between main shocks and aftershocks should be examined, and an aftershock simulation method with main shock ground motions needs to be developed. In this study, the data on the sequences of main shock–aftershock ground motions and other related parameters were collected. Using these data, correlations between the magnitude, frequency, duration and energy of the main shock–aftershock ground motions were investigated. The results showed that the magnitude of the aftershock can be larger than that of the main shock. The shapes of the Fourier amplitude spectra of main shocks and aftershocks were similar;however, the predominant frequency and high-frequency components of the aftershock tended to be larger. Considering the magnitude diff erence between the main shock and the aftershock, the correlation of durations was explored. Additionally, a new concept, the duration ratio, was defi ned to describe the concentration of seismic energy release, and main shock energy was strongly positively correlated with the energy attenuated during the main shock–aftershock sequence. Finally, based on these results regarding correlation, an aftershock synthesis using recorded main shock ground motions was constructed with the trigonometric series method for seismic design, and some examples are given to analyze the rationality of this synthetic method.
基金supported by Basic Science and Research Fund for Chinese Commonweal Institutes under grant No. 2008B07the National Natural Science Foundation of China under grant No. 90715042+1 种基金Special Research Project of Earth-quake Engineering under grant No. 200808008National Science and Technology Support Plan under grant No. 2006BAC13B02
文摘Based on Gutenberg-Richter's relation,Bath's law,Omori's law and Well's relation of rupture scale,this paper forecasts the temporal decay,total number,possible area and greatest magnitude of strong aftershocks(greater than or equal to M6.0) of the MS8.0 Wenchuan earthquake by using the magnitude and statistical parameters of earthquakes in California area of USA.The number of strong aftershocks,the parameters of Gutenberg-Richter's relation and the modified form of Omori's law are validated based on the relocation data of aftershock sequence of the MS8.0 Wenchuan earthquake.Moreover,the spatio-temporal characteristics and wave energy release of the strong aftershocks(M≥6.0) are analyzed.The result shows that strong aftershocks may occur at the end of local drop and sharp drop on the wave energy release curve.
基金jointly supported by the National Key R&D Program (No.2022YFF0800601)the Istanbul Technical University Research Fund (ITU-BAP)+1 种基金the Alexander von Humboldt Foundation Research Fellowship Award for providing computing facilities through the Humboldt-Stiftung Follow-Up Programthe University of California,Riverside。
文摘We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.
基金Joint Seismological Science Foundation of China(105076)continued subject″Statistical Features of Aftershock Sequences and Forecastof the Large Aftershocks″(2004BA601B01-04-02)Ministry of Science and Technology of Chinain the 10th Five-year Plan.
文摘Based on data of earthquake sequences with Ms≥5.0 in Chinese mainland from 1970 to 2004, for different sequence types and different rupture modes of the main shock, the relationship between aftershock distribution size R and the magnitude of the main shock Mo has been studied statistically. Considering the rupture mode of the main shock, we give the quantitative statistical relationships between R and Mo under 95% confidence level for different sequence typos. Qualitatively, lgR, the logarithm of the aftershock distribution size, is positively correlative to the M0, but the data distribution is dispersed. Viewing from different sequence typos, the correlation between R and M0 is very weak for isolated earthquake type (lET) sequence, R distributes in the range from 5 to 60 km; For mainshock-aftershock type (MAT), lgR is positively correlative to M0; For multiple main shock type (MMT), the corelation between lgR and M0 is not very obvious when M0≤6.2 and R distributes in the range from 5 to 70 km, while it shows a linear correlation when M0≥6.3. The statistical results also show that the occupational ratios of different sequence types for strike-slip and oblique slip are almost the same. But for dip-slip (mostly are thrust mechanisms), the ratio of MAT is higher than that of IET and MMT. Comparing with previous results, it indicates that, when M0 is large enough, R is mainly determined by M0 and there is almost no relationship with the rupture mode of the main shock.
基金supported by the State Key Laboratory of Geodesy and Earth’s Dynamics,Institute of Geodesy and Geophysicsthe Chinese Academy of Sciences through grant number SKLGED2013-7-1-Z
文摘We obtained a catalog of early aftershocks of the 2013 Lushan earthquake by examining waveform from a nearby station MDS which is 30.2 km far away from the epicenter, and then we analyzed the relation between aftershock rate and time. We used time-window ratio method to identify aftershocks from continuous waveform data and compare the result with the catalog provided by China Earthquake Networks Center (CENC). As expected, a significant amount of earthquakes is missing in CENC catalog in the 24 h after the main shock. Moreover, we observed a steady seismicity rate of aftershocks nearly in the first 10,000 s before an obvious power-law decay of aftershock activity. We consider this distinct early stage which does not fit the Omori law with a constant p (p - 1) value as early aftershock deficiency (EAD), as proposed by previous studies. Our study suggests that the main shock rupture process is different from aftershocks' processes, and EAD can vary in different cases as compared to earthquakes of strike-slip mechanism in California.
文摘Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field.
基金Basic research program from Institute of Earthquake Science China Earthquake Administration (690206)Social Welfare Research Program from Ministry of Science and Technology of China (2005DIB3J119)
基金National Key Technology R&D Program Under Grant No.2009BAK55B05Nonprofit Industry Research Project of CEA Under Grant No.201108003Science Foundation of Institute of Engineering Mechanics,CEA Under Grant No.2010C01
文摘Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide borehole information,and correspondingly,do not assign the site classes yet.In this paper,site classification methodologies for free-field strong motion stations are reviewed and the limitations and uncertainties of the horizontal-to-vertical spectral ratio(HVSR) methods are discussed.Then,a new method for site classification based on the entropy weight theory is proposed.The proposed method avoids the head or tail joggle phenomenon by providing the objective and subjective weights.The method was applied to aftershock recordings from the 2008 Wenchuan earthquake,and 54 free-field NSMONS stations were selected for site classification and the mean HVSRs were calculated.The results show that the improved HVSR method proposed in this paper has a higher success rate and could be adopted in NSMONS.
基金jointly funded by the National Key Research and Development Program of China (No. 2021YFC3000702)the Special Fund of the Institute of Geophysics, China Earthquake Administration (No. DQJB21Z05)the National Natural Science Foundation of China (No. 41804062)
文摘The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.
基金supported by the National Natural Scientific Foundation of China (41274059 and 40974021)Beijing Natural Scientific Foundation (8122039 and 8092028) to J. LeiSpecial Project for Basic Scientific Research (ZDJ2013-12) to G. Zhang
文摘Using the double-difference relocation algo- rithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake (Ms 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 krn depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-Vp, low-Vs, and high-Poisson's ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might signifi- cantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.
基金supported by National Natural Science Foundation of China (Grant No.41072231)China Geological Survey Bureau (Grant Nos 1212010914010 and 1212011220154)Program for Changjiang Scholars and Innovative Research Team in University" (Grant No. IRT0812)
文摘Previous investigations have shown that the seismic response of slopes during the Wenchuan earthquake was highly variable. The present study tries to give an answer to the question: Which are the main factors affecting the seismic response degree of slopes? With the support of the China Geological Survey Bureau, we set 3 monitoring sections in Jiulong slope, Mianzhu city, China with the aim to record the site response of the slope during the affershoeks of the Wenehuan earthquake. After the Wenchuan earthquake, which happened on 12 May 2008, 30 aftershocks have been recorded in these monitoring points. We analyzed 11 records, with magnitudes ranging from ML = 4.6 to ML = 3.1. The amplification factors of the horizontal compound PGA and 3D compound PGA have been determined for the 3 points at different elevations on the slope. Results showed that the dynamic response of the slope on the earthquake was controlled by factors such as topography and the thickness of the Quaternary overburden.
基金supported by the International Science and Technology Cooperation Program of China grant (2010DFB20190)the National Natural Science Foundation of China (Grants Nos. 41104058 and 41104057)support from the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2012K030)
文摘Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread con- cerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M- 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occur- rences are critical to improve hazard assessments.
文摘Shear wave splitting has been measured from analyzing the three-component digital seismograms recorded at Guiquan station after the 1985 Ms6 1 Luquan earthquake in Yunnan Province. The variations in parameters ofshear wave splitting with time for over 100 aftershocks have two periods, the local stress Period and the regionalstress period. In the local stress period, there exist two vertical, paralell crack sets intersecting at about (50-60°), both affect on the propagation of S-waves, and the local stress is slightly stronger than the regional stress.With the activity of aftershock going down and the local stress dying away, it is returned to the state of the regional stress in the focal area. The polarizations of the fast split S-wave and their period variations are identicalwith the azimuths and changes of the principal compressive stress axis of focal stress field inferred independentlyfrom earthquake mechanisms, hense, it is interpreted that the shear wave splitting is the effects of anisotropy ofEDA cracks controlled by stress field. The time delay of the slow split S-wave, except the difference betweenthe two periods shows in some examples that it increases in a few hours before an event and decreases in a fewdays after an event on the individual background of period.