In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua...In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.展开更多
We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevat...We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.展开更多
Extreme gravitational collapse is explored by utilizing two fundamental properties and one reasonable assumption, which together lead logically to an end-state gravitating structure. This structure, called a Terminal ...Extreme gravitational collapse is explored by utilizing two fundamental properties and one reasonable assumption, which together lead logically to an end-state gravitating structure. This structure, called a Terminal state neutron star, manifests nature’s ultimate density of mass and possesses the ultimate electromagnetic barrier. It is then shown how this structure is central to the remarkable mechanism whereby the density is prevented from going higher. A simple process assures that such density is not exceeded—regardless of the quantity of additional mass. As an example, the discourse focuses on the expected progression and outcome when a compact star of <img src="Edit_2c290d68-3330-4724-9e68-e7f1c9d3df1a.png" width="25" height="15" alt="" />—far more mass than can be accommodated by the basic Terminal state structure—undergoes total gravitational collapse. An examination of what happens to the considerable excess mass leads the discussion to the <i>principle of mass extinction by the process of aether deprivation</i> and its profound implications for black-hole physics and the current revolution in cosmology.展开更多
General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor the...General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor theories with preferred direction established at every point of spacetime by a fixed-norm vector field. The dynamical vector field defined in this way is referred to as the "aether". In this paper, we put forward the idea of a null aether field and introduce, for the first time, the Null Aether Theory(NAT) — a vector-tensor theory. We first study the Newtonian limit of this theory and then construct exact spherically symmetric black hole solutions in the theory in four dimensions, which contain Vaidya-type non-static solutions and static Schwarzschild-(A)dS type solutions, Reissner-Nordstr?m-(A)dS type solutions and solutions of conformal gravity as special cases. Afterwards, we study the cosmological solutions in NAT:We find some exact solutions with perfect fluid distribution for spatially flat FLRW metric and null aether propagating along the x direction. We observe that there are solutions in which the universe has big-bang singularity and null field diminishes asymptotically. We also study exact gravitational wave solutions — AdS-plane waves and pp-waves — in this theory in any dimension D ≥ 3. Assuming the Kerr-Schild-Kundt class of metrics for such solutions, we show that the full field equations of the theory are reduced to two, in general coupled, differential equations when the background metric assumes the maximally symmetric form. The main conclusion of these computations is that the spin-0 aether field acquires a "mass" determined by the cosmological constant of the background spacetime and the Lagrange multiplier given in the theory.展开更多
We study light rays in the static and spherically symmetric gravitational field of the null aether theory(NAT).To this end,we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole ...We study light rays in the static and spherically symmetric gravitational field of the null aether theory(NAT).To this end,we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole in the weak limit approximation.Using the optical metrics of the NAT black hole,we first obtain the Gaussian curvature and then calculate the leading terms of the deflection angle.Our calculations indicate how gravitational lensing is affected by the NAT field.We also illustrate that the bending of light stems from global and topological effects.展开更多
This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the var...This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the various relativistic theories. The need arising from the expanding Earth for a hydrodynamic mechanism for Newtonian and Coulomb fields is discussed. This hydrodynamic material mechanism is shown to constitute a completion of the Newton and Maxwell concepts of the fields, which were only a phenomenological description of physical reality. It is shown that the analogy between Maxwell’s equations and hydrodynamics cannot become a perfect correspondence. The lack of coupling of the electromagnetic field to the underlying material “causing field”—which induces hydrodynamical forces and accelerations observed only phenomenologically—gives rise to inaccuracies in the formulation of its equations, which are incorrect for Galilean covariance. But the most serious flaw in the original formulation of electromagnetism is the erroneous identification of the flow velocity of the field (variable as 1/r2) with the speed of light c, with which it was demonstrated that the fields of charges in motion contract in the direction of motion (the Heaviside ellipsoid, 1888, 1889). From this error, historically due to the incomplete development of many hydrodynamics sectors (a situation that persists today), came Fitz Gerald’s contractions and finally, the relativistic theories. Some future research lines are proposed for a return to realistic physics and a possible but still weak form of Galilean covariance.展开更多
In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G an...In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G and ħ. Oscillating spacetime is proposed to be the single universal field that generates and unifies everything in the universe. The 17 fields of quantum field theory are modeled as lower frequency resonances of oscillating spacetime. A model of an electron is proposed to be a rotating soliton wave in this medium. An electron appears to have wave-particle duality even though it is fundamentally a quantized wave. This soliton wave can momentarily be smaller than a proton in a high energy collision or can have a relatively large volume of an atom’s orbital wave function. Finding an electron causes it to undergo a superluminal collapse to a smaller wave size. This gives an electron its particle-like properties when detected. The proposed wave-based electron model is tested and shown to have an electron’s approximate energy, de Broglie wave properties and undetectable volume. Most important, this electron model is shown to also generate an electron’s electrostatic and gravitational forces. The gravitational properties are derived from the nonlinearity of this medium. When an electron’s gravitational and electrostatic forces are modeled as distortions of soliton waves, the equations become very simple, and a clear connection emerges between these forces. For example, the gravitational force between two Planck masses equals the electrostatic force between two Planck charges. Both force magnitudes equal ħc/r2.展开更多
文摘In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.
文摘We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.
文摘Extreme gravitational collapse is explored by utilizing two fundamental properties and one reasonable assumption, which together lead logically to an end-state gravitating structure. This structure, called a Terminal state neutron star, manifests nature’s ultimate density of mass and possesses the ultimate electromagnetic barrier. It is then shown how this structure is central to the remarkable mechanism whereby the density is prevented from going higher. A simple process assures that such density is not exceeded—regardless of the quantity of additional mass. As an example, the discourse focuses on the expected progression and outcome when a compact star of <img src="Edit_2c290d68-3330-4724-9e68-e7f1c9d3df1a.png" width="25" height="15" alt="" />—far more mass than can be accommodated by the basic Terminal state structure—undergoes total gravitational collapse. An examination of what happens to the considerable excess mass leads the discussion to the <i>principle of mass extinction by the process of aether deprivation</i> and its profound implications for black-hole physics and the current revolution in cosmology.
基金Supported in part by the Scientific and Technological Research Council of Turkey(TUBITAK)
文摘General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor theories with preferred direction established at every point of spacetime by a fixed-norm vector field. The dynamical vector field defined in this way is referred to as the "aether". In this paper, we put forward the idea of a null aether field and introduce, for the first time, the Null Aether Theory(NAT) — a vector-tensor theory. We first study the Newtonian limit of this theory and then construct exact spherically symmetric black hole solutions in the theory in four dimensions, which contain Vaidya-type non-static solutions and static Schwarzschild-(A)dS type solutions, Reissner-Nordstr?m-(A)dS type solutions and solutions of conformal gravity as special cases. Afterwards, we study the cosmological solutions in NAT:We find some exact solutions with perfect fluid distribution for spatially flat FLRW metric and null aether propagating along the x direction. We observe that there are solutions in which the universe has big-bang singularity and null field diminishes asymptotically. We also study exact gravitational wave solutions — AdS-plane waves and pp-waves — in this theory in any dimension D ≥ 3. Assuming the Kerr-Schild-Kundt class of metrics for such solutions, we show that the full field equations of the theory are reduced to two, in general coupled, differential equations when the background metric assumes the maximally symmetric form. The main conclusion of these computations is that the spin-0 aether field acquires a "mass" determined by the cosmological constant of the background spacetime and the Lagrange multiplier given in the theory.
文摘We study light rays in the static and spherically symmetric gravitational field of the null aether theory(NAT).To this end,we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole in the weak limit approximation.Using the optical metrics of the NAT black hole,we first obtain the Gaussian curvature and then calculate the leading terms of the deflection angle.Our calculations indicate how gravitational lensing is affected by the NAT field.We also illustrate that the bending of light stems from global and topological effects.
文摘This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the various relativistic theories. The need arising from the expanding Earth for a hydrodynamic mechanism for Newtonian and Coulomb fields is discussed. This hydrodynamic material mechanism is shown to constitute a completion of the Newton and Maxwell concepts of the fields, which were only a phenomenological description of physical reality. It is shown that the analogy between Maxwell’s equations and hydrodynamics cannot become a perfect correspondence. The lack of coupling of the electromagnetic field to the underlying material “causing field”—which induces hydrodynamical forces and accelerations observed only phenomenologically—gives rise to inaccuracies in the formulation of its equations, which are incorrect for Galilean covariance. But the most serious flaw in the original formulation of electromagnetism is the erroneous identification of the flow velocity of the field (variable as 1/r2) with the speed of light c, with which it was demonstrated that the fields of charges in motion contract in the direction of motion (the Heaviside ellipsoid, 1888, 1889). From this error, historically due to the incomplete development of many hydrodynamics sectors (a situation that persists today), came Fitz Gerald’s contractions and finally, the relativistic theories. Some future research lines are proposed for a return to realistic physics and a possible but still weak form of Galilean covariance.
文摘In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G and ħ. Oscillating spacetime is proposed to be the single universal field that generates and unifies everything in the universe. The 17 fields of quantum field theory are modeled as lower frequency resonances of oscillating spacetime. A model of an electron is proposed to be a rotating soliton wave in this medium. An electron appears to have wave-particle duality even though it is fundamentally a quantized wave. This soliton wave can momentarily be smaller than a proton in a high energy collision or can have a relatively large volume of an atom’s orbital wave function. Finding an electron causes it to undergo a superluminal collapse to a smaller wave size. This gives an electron its particle-like properties when detected. The proposed wave-based electron model is tested and shown to have an electron’s approximate energy, de Broglie wave properties and undetectable volume. Most important, this electron model is shown to also generate an electron’s electrostatic and gravitational forces. The gravitational properties are derived from the nonlinearity of this medium. When an electron’s gravitational and electrostatic forces are modeled as distortions of soliton waves, the equations become very simple, and a clear connection emerges between these forces. For example, the gravitational force between two Planck masses equals the electrostatic force between two Planck charges. Both force magnitudes equal ħc/r2.