期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Seamless morphing trailing edge flaps for UAS-S45 using high-fidelity aerodynamic optimization 被引量:1
1
作者 Mir Hossein NEGAHBAN Musavir BASHIR +1 位作者 Victor TRAISNEL Ruxandra Mihaela BOTEZ 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期12-29,共18页
The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,... The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate. 展开更多
关键词 Seamless morphing trailing edge flap aerodynamic optimization Gradient-based optimiza-tion Climb flight condition Gliding descent Flight range Endurance
原文传递
A new non-linear vortex lattice method:Applications to wing aerodynamic optimizations 被引量:7
2
作者 Oliviu Sugar Gabor Andreea Koreanschi Ruxandra Mihaela Botez 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1178-1195,共18页
This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity... This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing. 展开更多
关键词 aerodynamic design aerodynamic optimization Enhanced potential method Morphing wing Nonlinear vortex latticemethod Quasi-3D aerodynamic method UAS optimization
原文传递
An improved adaptive sampling and experiment design method for aerodynamic optimization 被引量:5
3
作者 Huang Jiangtao Gao Zhenghong +1 位作者 Zhou Zhu Zhao Ke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1391-1399,共9页
Experiment design method is a key to construct a highly reliable surrogate model for numerical optimization in large-scale project. Within the method, the experimental design criterion directly affects the accuracy of... Experiment design method is a key to construct a highly reliable surrogate model for numerical optimization in large-scale project. Within the method, the experimental design criterion directly affects the accuracy of the surrogate model and the optimization efficient. According to the shortcomings of the traditional experimental design, an improved adaptive sampling method is proposed in this paper. The surrogate model is firstly constructed by basic sparse samples. Then the supplementary sampling position is detected according to the specified criteria, which introduces the energy function and curvature sampling criteria based on radial basis function (RBF) network. Sampling detection criteria considers both the uniformity of sample distribution and the description of hypersurface curvature so as to significantly improve the prediction accuracy of the surrogate model with much less samples. For the surrogate model constructed with sparse samples, the sample uniformity is an important factor to the interpolation accuracy in the initial stage of adaptive sam- pling and surrogate model training. Along with the improvement of uniformity, the curvature description of objective function surface gradually becomes more important. In consideration of these issues, crowdness enhance function and root mean square error (RMSE) feedback function are introduced in C criterion expression. Thus, a new sampling method called RMSE and crowd- ness enhance (RCE) adaptive sampling is established. The validity of RCE adaptive sampling method is studied through typical test function firstly and then the airfoil/wing aerodynamic opti- mization design problem, which has high-dimensional design space. The results show that RCE adaptive sampling method not only reduces the requirement for the number of samples, but also effectively improves the prediction accuracy of the surrogate model, which has a broad prospects for applications. 展开更多
关键词 aerodynamic optimization Crowdness enhance function RBF model RCE adaptive sampfing RMSE feedback
原文传递
Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap 被引量:13
4
作者 Weishuang LU Yun TIAN Peiqing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期988-1003,共16页
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb... Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam. 展开更多
关键词 aerodynamic optimization GA(W)-2 airfoil Mechanism design Trailing-edge flap Variable camber
原文传递
A Surface Mesh Movement Algorithm for Aerodynamic Optimization of the Nacelle Position on Wing-Body-Nacelle-Pylon Configuration 被引量:1
5
作者 Gao Yisheng Wu Yizhao +1 位作者 Xia Jian Tian Shuling 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第6期-,共13页
A surface mesh movement algorithm,combining surface mesh mapping with Delaunay graph mapping,is proposed for surface mesh movement involving complex intersections,like wing/pylon intersections.First,surface mesh mappi... A surface mesh movement algorithm,combining surface mesh mapping with Delaunay graph mapping,is proposed for surface mesh movement involving complex intersections,like wing/pylon intersections.First,surface mesh mapping is adopted for the movement of intersecting lines along the spanwise direction and the wing surface mesh,and then Delaunay graph mapping is utilized for the deformation of the pylon surface mesh,guaranteeing consistent and smooth surface meshes.Furthermore,the corresponding surface sensitivity procedure is implemented for accurate and efficient calculation of the surface sensitivities.The proposed surface mesh movement algorithm and the surface sensitivity procedure are integrated into a discrete adjoint-based optimization framework to optimize the nacelle position on the DLR-F6 wing-body-nacelle-pylon configuration for drag minimization.The results demonstrate that the strong shock on the initial pylon surface is nearly eliminated and the optimal nacelle position can be obtained within less than ten iterations. 展开更多
关键词 aerodynamic optimization aerodynamicS aircraft surface mesh ADJOINT
在线阅读 下载PDF
AERODYNAMIC OPTIMIZATION DESIGN OF LOW ASPECT RATIO TRANSONIC TURBINE STAGE 被引量:2
6
作者 SONG Liming LI Jun FENG Zhenping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期500-504,共5页
The advanced optimization method named as adaptive range differential evolution (ARDE) is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the stand... The advanced optimization method named as adaptive range differential evolution (ARDE) is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the standard genetic algorithm and differential evolution. Combined with parallel ARDE, surface modeling method and Navier-Stokes solution, a new automatic aerodynamic optimization method is presented. A low aspect ratio transonic turbine stage is optimized for the maximization of the isentropic efficiency with forty-one design variables in total. The coarse-grained parallel strategy is applied to accelerate the design process using 15 CPUs. The isentropic efficiency of the optimum design is 1.6% higher than that of the reference design. The aerodynamic performance of the optimal design is much better than that of the reference design. 展开更多
关键词 Turbine stage Adaptive range differential evolution (ARDE)aerodynamic optimization Coarse-grained parallel strategy
在线阅读 下载PDF
APPLICATION OF VARIABLE-FIDELITY MODELS TO AERODYNAMIC OPTIMIZATION
7
作者 夏露 高正红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第8期1089-1095,共7页
For aerodynamic shape optimization, the approximation management framework (AMF) method is used to organize and manage the variable-fidelity models. The method can take full advantage of the low-fidelity, cheaper mo... For aerodynamic shape optimization, the approximation management framework (AMF) method is used to organize and manage the variable-fidelity models. The method can take full advantage of the low-fidelity, cheaper models to concentrate the main workload on the low-fidelity models in optimization iterative procedure. Furthermore, it can take high-fidelity, more expensive models to monitor the procedure to make the method globally convergent to a solution of high-fidelity problem. Finally, zero order variable-fidelity aerodynamic optimization management framework and search algorithm are demonstrated on an airfoil optimization of UAV with a flying wing. Compared to the original shape, the aerodynamic performance of the optimal shape is improved. The results show the method has good feasibility and applicability. 展开更多
关键词 aerodynamic optimization variable-fidelity approximation management framework
在线阅读 下载PDF
Application of Aerodynamic Optimization Design and Dynamic Numerical Simulation in UAV Design
8
作者 SUN Kaijun YU Yueyang FU Yiwei 《Aerospace China》 2020年第3期38-45,共8页
In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the develop... In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test. 展开更多
关键词 aerodynamic optimization design dynamic numerical simulation UAV
在线阅读 下载PDF
Multi-Objective Multi-Variable Large-Size Fan Aerodynamic Optimization by Using Multi-Model Ensemble Optimization Algorithm 被引量:4
9
作者 XIONG Jin GUO Penghua LI Jingyin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期914-930,共17页
The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimizati... The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm. 展开更多
关键词 multi-objective optimization surrogate-assisted evolutionary algorithm axial fan computational fluid dynamics aerodynamic optimization
原文传递
An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions
10
作者 Zilan Zhang Yu Ao +1 位作者 Shaofan Li Grace X.Gu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期27-34,共8页
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil... Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements. 展开更多
关键词 aerodynamic optimization Computational fluid dynamics Radial basis function Finite wing Deep learning neural network
在线阅读 下载PDF
Aerodynamic/control integrated optimization method for unpowered high-speed vehicle configuration design 被引量:1
11
作者 Xin PAN Linlin WANG +2 位作者 Li LI Lulu JIANG Gang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期153-167,共15页
The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspa... The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system. 展开更多
关键词 aerodynamic/Control Integrated optimization MDO High-speed vehicle Shape optimization Controllability
原文传递
ROBUST OPTIMIZATION OF AERODYNAMIC DESIGN USING SURROGATE MODEL 被引量:4
12
作者 王宇 余雄庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期181-187,共7页
To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the ... To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties. 展开更多
关键词 surrogate model UNCERTAINTY AIRFOIL aerodynamic optimization
在线阅读 下载PDF
Enhancing box-wing design efficiency through machine learning based optimization
13
作者 Mehedi HASAN Azad KHANDOKER 《Chinese Journal of Aeronautics》 2025年第2期46-59,共14页
The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedic... The optimization of wings typically relies on computationally intensive high-fidelity simulations,which restrict the quick exploration of design spaces.To address this problem,this paper introduces a methodology dedicated to optimizing box wing configurations using low-fidelity data driven machine learning approach.This technique showcases its practicality through the utilization of a tailored low-fidelity machine learning technique,specifically designed for early-stage wing configuration.By employing surrogate model trained on small dataset derived from low-fidelity simulations,our method aims to predict outputs within an acceptable range.This strategy significantly mitigates computational costs and expedites the design exploration process.The methodology's validation relies on its successful application in optimizing the box wing of PARSIFAL,serving as a benchmark,while the primary focus remains on optimizing the newly designed box wing by Bionica.Applying this method to the Bionica configuration led to a notable 14%improvement in overall aerodynamic effciency.Furthermore,all the optimized results obtained from machine learning model undergo rigorous assessments through the high-fidelity RANS analysis for confirmation.This methodology introduces innovative approach that aims to streamline computational processes,potentially reducing the time and resources required compared to traditional optimization methods. 展开更多
关键词 Box wing optimization aerodynamic shape optimization Multi-objective optimization Machine learning Multi-fidelity method
原文传递
Effect of Streamline Length on Aerodynamic Performance of 600 km/h Maglev Trains
14
作者 Yan Li Bailong Sun +1 位作者 Tian Li Weihua Zhang 《Computer Modeling in Engineering & Sciences》 2025年第8期1957-1970,共14页
High-speed maglev trains represent a key direction for the future development of rail transportation.As operating speeds increase,they face increasingly severe aerodynamic challenges.The streamlined aerodynamic shape ... High-speed maglev trains represent a key direction for the future development of rail transportation.As operating speeds increase,they face increasingly severe aerodynamic challenges.The streamlined aerodynamic shape of a maglev train is a critical factor influencing its aerodynamic performance,and optimizing its length plays a significant role in improving the overall aerodynamic characteristics of the train.In this study,a numerical simulation model of a high-speed maglev train was established based on computational fluid dynamics(CFD)to investigate the effects of streamline length on the aerodynamic performance of the train operating on an open track.The results show that the length of the streamlined section has a pronounced impact on aerodynamic performance.When the streamline length increases from 8.3 to 14.3 m,the aerodynamic drag of the head and tail cars decreases by 16.2%and 32.1%,respectively,with reductions observed in both frictions drag and pressure drag-the latter showing the most significant decrease in the tail car.Moreover,the extended streamline length effectively suppresses flow separation on the train body surface.The intensity of the positive pressure region on the upper surface of the head car streamlined section is reduced,directly leading to a 38.2%reduction in lift.This research provides a theoretical basis for the parametric design of aerodynamic shapes for high-speed maglev trains and offers guidance and recommendations for drag and lift reduction optimization. 展开更多
关键词 High-speed maglev train aerodynamic characteristics optimization numerical simulation
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
15
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 aerodynamic optimization Dimensional reduction Improved multi-objective particle swarm optimization(MOPSO) algorithm Multi-objective Principal component analysis
原文传递
A Phased Aerodynamic Optimization Method for Compressors Based on Multi-Degrees-of-Freedom Surface Parameterization 被引量:2
16
作者 CHENG Jinxin YANG Chengwu ZHAO Shengfeng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第6期2071-2086,共16页
High-fidelity aerodynamic optimization of compressors is afflicted by the"curse of dimensionality",which limits its engineering applications.This paper proposes a new multi-degrees-of-freedom(MDOF)surface pa... High-fidelity aerodynamic optimization of compressors is afflicted by the"curse of dimensionality",which limits its engineering applications.This paper proposes a new multi-degrees-of-freedom(MDOF)surface parameterization method that combines the characteristics of conventional surface parameterization methods,low-dimensionality and surface smoothness,with the advantages of design flexibility and ease of construction.The proposed method is applied to the high-fidelity aerodynamic optimization of Rotor37.An optimized solution is obtained within 111 h by combining a phased optimization strategy based on the idea of modal optimization.To explore a better way of setting the control variables of the blade body,two methods of varying the control points of the suction and pressure surfaces,independent change and synchronous change,are compared.Synchronous change has better flexibility,and under the condition of satisfying the constraints,it increases the efficiency at the design point by 2.2%and the surge margin by 0.5%.This demonstrates the effectiveness of the proposed method in the high-fidelity aerodynamic optimization of compressors.It also provides technical support to solve the"curse of dimensionality"problem. 展开更多
关键词 surface parameterization aerodynamic optimization compressor blade phased strategy
原文传递
Hierarchical Evolutionary Algorithms and Its Application in Transonic Airfoil Optimization in Aerodynamics
17
作者 王江峰 伍贻兆 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第1期1-6,共6页
Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization p... Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization problems Inspired from the natural evolution history that different periods with certain environments have different criteria for the evaluations of individuals’ fitness, a hierarchical fidelity model is introduced to reach high optimization efficiency The shape of an NACA0012 based airfoil is optimized in maximizing the lift coefficient under a given transonic flow condition Optimized results are presented and compared with the single model results and traditional GA 展开更多
关键词 transonic flow aerodynamic optimization finite element method unstructured grid hierarchical fidelity models evolutionary algorithms
在线阅读 下载PDF
Aerodynamic adjoint optimization of turbomachinery with direct control on blade design parameters
18
作者 Xin LI Tongtong MENG +2 位作者 Weiwei LI Ling ZHOU Lucheng JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期119-134,共16页
Nowadays,the adjoint method has become a popular approach in the optimization of turbomachinery to further improve its aerodynamic performance.However,design variables in these adjoint optimization applications are ge... Nowadays,the adjoint method has become a popular approach in the optimization of turbomachinery to further improve its aerodynamic performance.However,design variables in these adjoint optimization applications are generally not direct design parameters of blade(such as wedge angles or maximum thickness),making the geometric variation by adjoint optimization can hardly be re-extracted as the change of each design parameter.By giving considerations to the G1 continuity constraint of adjoint method on its parameterization method,this manuscript shows how to apply a parameterization method in 3D blade design process into adjoint optimization.Nearly all design parameters can therefore be treated as design variables in the adjoint method and then participate in the sensitivity-based optimization.Finally,a fitted Rotor 67 blade is optimized and the adiabatic efficiency is significantly improved by nearly 0.91%. 展开更多
关键词 Adjoint method Parameterization method aerodynamic optimization Customized blading method COMPRESSOR TURBOMACHINERY
原文传递
Continuous and Discrete Adjoint Approach Based on Lattice Boltzmann Method in Aerodynamic Optimization Part I:Mathematical Derivation of Adjoint Lattice Boltzmann Equations
19
作者 Mohamad Hamed Hekmat Masoud Mirzaei 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第5期570-589,共20页
The significance of flow optimization utilizing the lattice Boltzmann(LB)method becomes obvious regarding its advantages as a novel flow field solution method compared to the other conventional computational fluid dyn... The significance of flow optimization utilizing the lattice Boltzmann(LB)method becomes obvious regarding its advantages as a novel flow field solution method compared to the other conventional computational fluid dynamics techniques.These unique characteristics of the LB method form the main idea of its application to optimization problems.In this research,for the first time,both continuous and discrete adjoint equations were extracted based on the LB method using a general procedure with low implementation cost.The proposed approach could be performed similarly for any optimization problem with the corresponding cost function and design variables vector.Moreover,this approach was not limited to flow fields and could be employed for steady as well as unsteady flows.Initially,the continuous and discrete adjoint LB equations and the cost function gradient vector were derived mathematically in detail using the continuous and discrete LB equations in space and time,respectively.Meanwhile,new adjoint concepts in lattice space were introduced.Finally,the analytical evaluation of the adjoint distribution functions and the cost function gradients was carried out. 展开更多
关键词 aerodynamic optimization continuous and discrete adjoint approach lattice Boltzmann method
在线阅读 下载PDF
Global aerodynamic design optimization based on data dimensionality reduction 被引量:14
20
作者 Yasong QIU Junqiang BAI +1 位作者 Nan LIU Chen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期643-659,共17页
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number... In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method. 展开更多
关键词 aerodynamic shape design optimization Data dimensionality reduction Genetic algorithm Kriging surrogate model Proper orthogonal decomposition
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部