期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Aerodynamic-driven morphing aircraft and its aerodynamic design
1
作者 Tingyu GUO Chenhua ZHU +2 位作者 Liangtao FENG Yuyu DUAN Haixin CHEN 《Chinese Journal of Aeronautics》 2025年第6期230-241,共12页
Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process... Morphing technology is considered a crucial direction for the future development of aircraft.However,conventional morphing aircraft often employ complex actuation mechanisms and actuators to drive the morphing process.The associated costs in terms of structural weight increase and space occupancy are prohibitively high,even exceeding the benefit of morphing.Especially for high aspect ratio aircraft with large root bending moments,it is very difficult for actuators to directly drive wing deformation.To address this issue,aerodynamic forces generated by control surface deflection can be utilized as an alternative to actuator-driven morphing.This approach reduces the overall cost of morphing while enhancing its benefits.This novel aerodynamic-driven morphing technique imposes new requirements and challenges on the aerodynamic design of aircraft.With a combination of flight experiments and numerical simulations,this article analyzes the variations in aerodynamic forces during the aerodynamic-driven process.Using a high aspect ratio longendurance UAV as the design baseline,the design method of the control surface for aerodynamic-driven morphing is also discussed. 展开更多
关键词 High aspect ratio aircraft Morphing aircraft Flight test aerodynamic design Computational fluid dynamics
原文传递
Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization 被引量:16
2
作者 Jun TAO Gang SUN +1 位作者 Liqiang GUO Xinyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1573-1588,共16页
An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of d... An efficient method employing a Principal Component Analysis(PCA)-Deep Belief Network(DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study.In order to reduce the number of design variables for aerodynamic optimizations,the PCA technique is implemented to the geometric parameters obtained by parameterization method.For the purpose of predicting aerodynamic parameters,the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output,and it is trained using the k-step contrastive divergence algorithm.The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils,and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models.Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization(PSO)framework,and applied to the robust aerodynamic design optimizations of Natural Laminar Flow(NLF)airfoil and transonic wing.The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing.By employing the PCA-DBN-based surrogate model,the developed efficient method improves the optimization efficiency obviously. 展开更多
关键词 aerodynamic design opti­mization Deep neural networks Particle swarm optimization Principal component analy­sis Surrogate model
原文传递
Aerodynamic design on high-speed trains 被引量:22
3
作者 San-San Ding Qiang Li +2 位作者 Ai-Qin Tian Jian Du Jia-Li Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期215-232,共18页
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ... Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains. 展开更多
关键词 High-speed train aerodynamic design Optimization design Smooth design
在线阅读 下载PDF
Aerodynamic Design for Three-Dimensional Multi-lifting Surfaces at Transonic Flow 被引量:2
4
作者 杨青真 张仲寅 +2 位作者 Thomas Streit Georg Wichmann 郑勇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期24-30,共7页
An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used... An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow. 展开更多
关键词 aerodynamic design transonic flow iterative residual correction multi-liftlng surfaces CANARD WING
在线阅读 下载PDF
Aerodynamic design of transonic fan/compressor by 3D viscous RNS combined with genetic algorithms
5
作者 姜斌 王松涛 +1 位作者 冯国泰 王仲奇 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期143-148,共6页
This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on t... This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value. 展开更多
关键词 transonic fan aerodynamic design shock structure genetic algorithm
在线阅读 下载PDF
Global aerodynamic design optimization based on data dimensionality reduction 被引量:14
6
作者 Yasong QIU Junqiang BAI +1 位作者 Nan LIU Chen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期643-659,共17页
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number... In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method. 展开更多
关键词 aerodynamic shape design optimization Data dimensionality reduction Genetic algorithm Kriging surrogate model Proper orthogonal decomposition
原文传递
Aerodynamic Design Methodology for Blended Wing Body Transport 被引量:31
7
作者 LI Peifeng ZHANG Binqian +2 位作者 CHEN Yingchun YUAN Changsheng LIN Yu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期508-516,共9页
This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design id... This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work. 展开更多
关键词 blended wing body aerodynamic configurations computational fluid dynamics optimization design inverse design
原文传递
A panoramic aerodynamic performance prediction method for turbomachinery cascades using transformer-enhanced neural operator
8
作者 Qineng WANG Zhendong GUO +1 位作者 Liming SONG Tianyuan LIU 《Chinese Journal of Aeronautics》 2025年第7期99-114,共16页
To enable flexible and rapid aerodynamic performance evaluation in turbomachinery design,this paper proposes a panoramic performance prediction framework.Unlike most previous prediction models that directly predict th... To enable flexible and rapid aerodynamic performance evaluation in turbomachinery design,this paper proposes a panoramic performance prediction framework.Unlike most previous prediction models that directly predict the objective functions of interest,the approach first predicts the basic parameters of the Navier–Stokes equations,such as temperature,pressure,and density.Utilizing these basic physical quantities,it subsequently predicts key performance parameters of the turbine stage meridian plane.By adopting this methodology,the proposed panoramic performance prediction framework functions similarly to a CFD simulator,capable of predicting various objective of interest to the designers.To enhance prediction accuracy,a Transformer-enhanced Neural Operator(TNO)is introduced within this framework.Using the Rotor 37 blades as a reference,the proposed TNO is trained to predict the performance of a transonic compressor blade in the meridian plane.The TNO can accurately predict total quantities such as isentropic efficiency,mass flow,and distributions of total pressure ratio.Remarkably,the prediction error of TNO is observed to be smaller than that of state-of-the-art deep learning operators such as the Fourier Neural Operator(FNO)network and Deep Operator Network(DeepONet).Furthermore,the TNO is applied to downstream tasks,including sensitivity analysis and optimization of various objective functions.The results confirm that the TNO can operate almost like a CFD simulator,while reducing the computational cost of downstream tasks by four orders of magnitude.The effectiveness and reliability of the proposed TNO for solving different kinds of downstream tasks have been well demonstrated. 展开更多
关键词 TURBOMACHINERY aerodynamic design Physics field prediction Neural networks Compressor design
原文传递
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method 被引量:2
9
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
在线阅读 下载PDF
MULTI-OBJECTIVE SHAPE DESIGN IN AERODYNAMICS USING GAME STRATEGY 被引量:1
10
作者 唐智礼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期195-199,共5页
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co... Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method. 展开更多
关键词 Game theory multi-objective optimization aerodynamic design constrained optimal control theory
在线阅读 下载PDF
Aerodynamic design for China new high-speed trains 被引量:18
11
作者 YANG GuoWei GUO DiLong +1 位作者 YAO ShuanBao LIU ChengHui 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1923-1928,共6页
High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the env... High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances. 展开更多
关键词 aerodynamic design CFD wind-tunnel test high-speed train CRH380
原文传递
Aerodynamic design optimization by using a continuous adjoint method 被引量:8
12
作者 LUO JiaQi XIONG JunTao LIU Feng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第7期1363-1375,共13页
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous ... This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem. 展开更多
关键词 continuous adjoint method aerodynamic design optimization transonic flow computational fluid dynamics aerospace engineering
原文传递
Aerodynamic optimization design for high pressure turbines based on the adjoint approach 被引量:6
13
作者 Chen Lei Chen Jiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期757-769,共13页
Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The object... Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The objective function is defined as an integral function along the boundaries, and the adjoint equations and the boundary conditions are derived by introducing the adjoint variable vec- tors. The gradient expression of the objective function then includes only the terms related to phys- ical shape variations. The numerical solution of the adjoint equation is conducted by a finite- difference method with the Jameson spatial scheme employing the first and the third order dissipa- tive fluxes. A gradient-based aerodynamic optimization system is established by integrating the blade stagger angles, the stacking lines and the passage perturbation parameterization with the quasi-Newton method of Broyden Fletcher Goldfarb-Shanno (BFGS). The application of the continuous adjoint method is validated through a single stage high pressure turbine optimization case. The adiabatic efficiency increases from 0.8875 to 0.8931, whilst the mass flow rate and the pressure ratio remain almost unchanged. The optimization design is shown to reduce the passage vortex loss as well as the mixing loss due to the cooling air injection. 展开更多
关键词 Adjoint method aerodynamic design High pressure turbineOptimization design Objective function
原文传递
An aerodynamic design and numerical investigation of transonic centrifugal compressor stage 被引量:3
14
作者 Weilin Yi Lucheng Ji +3 位作者 Yong Tian Weiwei Shao Weiwei Li Yunhan Xiao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第3期211-217,共7页
In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD pr... In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated. 展开更多
关键词 IMPELLER DIFFUSER CFD aerodynamic design
原文传递
Study on Aerodynamic Design Optimization of Turbomachinery Blades 被引量:3
15
作者 Naixing CHEN Hongwu ZHANG Weiguang HUANG Yanji XU 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第4期298-304,320,共8页
This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few y... This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize tm-bomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time. 展开更多
关键词 aerodynamic design optimization response surface method blade parameterization 3D aerodynamics of turbomachinery.
原文传递
A Study of 3D Aerodynamic Design for a Transonic Compressor Blading Optimized by the Locations of Aerofoil Maximum Thickness and Maximum Camber 被引量:1
16
作者 Naixing Chen Hongwu Zhang Yanji Xu Weiguang HuangInstitute of Engineering Thermophysics, Chinese Academy of Sciences, P.O. Box 2706, Beijing 100080, 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第3期198-203,共6页
A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional... A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional Navier-Stokes solver and an optimization approach. The objective of the present paper is to design a transonic compressor blading optimized only by selection of the locations of maximum camber and maximum thickness for the airfoils at different span heights and to study how do these two design parameters affect the blade performance. The blading configuration and the computational meshes can be obtained very rapidly for any given combination of maximum camber and maximum thickness. The computational grid system generated is used for the Navier-Stokes solution to predict adiabatic efficiency, total pressure ratio and flow rate. As a main result of the optimization, adiabatic efficiency was successfully improved. 展开更多
关键词 axial transonic compressor 3D aerodynamic design optimization N.S. solver rapid generation of computational meshes
原文传递
Nonlinear uncertainty impact of geometric variations on aerodynamic performance of low-pressure turbine blades with ultra-high loading under extreme operational conditions 被引量:1
17
作者 Xiaojing WANG Zhengping ZOU +1 位作者 Chao FU Pengcheng DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期281-300,共20页
Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reducti... Uncertainty impact of random geometric variations on the aerodynamic performance of low-pressure turbine blades is considerable,which is further amplified by the current ultra-high-lift design trend for weight reduction.Therefore,this uncertainty impact on ultra-highly loaded blades under extreme operational conditions near the margins with potential large-scale open separation is focused on in this study.It is demonstrated that this impact is significant,unfavourable,and nonlinear,which is clearly severer under extreme conditions.In addition to the overall attenuation and notable scattering of specific performance,the operational margins with open separation are also notably scattered with great risk of significant reduction.This scattering and nonlinearity are dominated by the variations in leading-edge thickness.The thinning of leading edge triggers local transition,enhancing downstream friction and reducing resistance to open separation,which is further exacerbated by operational deterioration.However,the opposite thickening yields less benefit,implying nonlinearity.This unfavourable impact highlights the need for robust aerodynamic design,where both a safer operational condition and a more robust blade are indispensable,i.e.,a compromise among performance,weight,and robustness.Besides the necessary limitation of loading levels,a mid-loaded design is recommended to reduce adverse pressure gradients in both the leading edge and rear region of the suction side,which helps to decrease the susceptibility of the transition and open separation to random perturbations.Similar improvements can also be achieved by appropriately thickening the leading edge. 展开更多
关键词 Ultra-highly loaded turbine blade Geometric variations Uncertainty analysis Operational margins Robust aerodynamic design NONLINEARITY
原文传递
Conceptual Design and Aerodynamic Study of Joined-Wing Business Jet Aircraft
18
作者 Harijono Djojodihardjo Kim Em Foong 《Journal of Mechanics Engineering and Automation》 2013年第5期263-278,共16页
The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, redu... The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction. 展开更多
关键词 Aircraft conceptual design aerodynamic design joined wing box wing.
在线阅读 下载PDF
Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets 被引量:5
19
作者 Jifei WANG Jinsheng CAI +2 位作者 Chuanzhen LIU Yanhui DUAN Yaojie YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1349-1362,共14页
In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the... In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition(CST) and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical. 展开更多
关键词 aerodynamic configurations Hypersonic Integration design Inward-turning inlet Numerical simulation
原文传递
Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap 被引量:13
20
作者 Weishuang LU Yun TIAN Peiqing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期988-1003,共16页
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb... Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam. 展开更多
关键词 aerodynamic optimization GA(W)-2 airfoil Mechanism design Trailing-edge flap Variable camber
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部