期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fault-tolerant control strategies for tilt-rotor aerial-aquatic vehicles:Design and implementation 被引量:1
1
作者 Sihuan Wu Sifan Wu +3 位作者 Maosen Shao Zhilin He Yuan Liu Jinxiu Zhang 《Defence Technology(防务技术)》 2025年第9期274-293,共20页
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin... The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability. 展开更多
关键词 aerial-aquatic vehicle Tiltable quadcopter FAULT-TOLERANCE Cross-media operation
在线阅读 下载PDF
A high maneuvering motion strategy and stable control method for tandem twin-rotor aerial-aquatic vehicles near the water surface
2
作者 Sifan Wu Maosen Shao +4 位作者 Sihuan Wu Zhilin He Hui Wang Jinxiu Zhang Yuan Liu 《Defence Technology(防务技术)》 2025年第2期206-220,共15页
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this... The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent. 展开更多
关键词 Tandem twin-rotor aerial-aquatic vehicle High maneuvering motion strategy Active disturbance rejection controller Skipping on water surface
在线阅读 下载PDF
Design and Theoretical Research on Aerial-Aquatic Vehicles:A Review 被引量:2
3
作者 Yi Sun Xuefei Liu +5 位作者 Kai Cao Huan Shen Qian Li Guangming Chen Jiajun Xu Aihong Ji 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2512-2541,共30页
With the rapid development of unmanned aerial and underwater vehicles,various tasks,such as biodiversity monitoring,surveying,and mapping,as well as,search and rescue can now be completed in a single medium,either und... With the rapid development of unmanned aerial and underwater vehicles,various tasks,such as biodiversity monitoring,surveying,and mapping,as well as,search and rescue can now be completed in a single medium,either underwater or in the air.By systematically examining the water–air cross-medium locomotion of organisms,there has been growing interest in the development of aerial-aquatic vehicles.The goal of this review is to provide a detailed outline of the design and cross-medium theoretical research of the existing aerial-aquatic vehicles based on the research on the organisms capable of transiting between water and air.Although these designs and theoretical frameworks have been validated in many aerial-aquatic vehicles,there are still many problems that need to be addressed,such as inflexible underwater motion and unstable medium conversion.As a result,supplementation of the existing cross-medium biomimetic research,vehicle design,power selection,and cross-medium theory is urgently required to optimize the key technologies in detail.Therefore,by summarizing the existing designs and theoretical approaches on aerial-aquatic vehicles,including biomimetic research on water–air cross-medium locomotion in nature,different power selections,and cross-medium theoretical research,the relative problems and development trends on aerial-aquatic vehicles were thoroughly explored,providing significant help for the subsequent research process. 展开更多
关键词 aerial-aquatic vehicle Cross-medium motion Power selection Control theory BIOMIMETIC
在线阅读 下载PDF
Cormorant Webbed-feet Support Water-surface Takeoff:Quantitative Analysis via CFD 被引量:1
4
作者 Jinguo Huang Jianhong Liang +2 位作者 Xingbang Yang Hongyu Chen Tianmiao Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第5期1086-1100,共15页
The bio-inspired aerial–aquatic vehicle off ers attractive perspectives for future intelligent robotic systems.Cormorant’s webbed-feet support water-surface takeoff is a typical locomotion pattern of amphibious wate... The bio-inspired aerial–aquatic vehicle off ers attractive perspectives for future intelligent robotic systems.Cormorant’s webbed-feet support water-surface takeoff is a typical locomotion pattern of amphibious water birds,but its highly maneuverable and agile kinetic behaviors are inconvenient to measure directly and challenging to calculate convergently.This paper presents a numerical Computational Fluid Dynamic(CFD)technique to simulate and reproduce the cormorant's surface takeoff process by modeling the three-dimensional biomimetic cormorant.Quantitative numerical analysis of the fluid flows and hydrodynamic forces around a cormorant’s webbed feet,body,and wings are conducted,which are consistent with experimental results and theoretical verification.The results show that the webbed feet indeed produced a large majority of the takeoff power during the initial takeoff stage.Prior lift and greater angle of attack are generated to bring the body off the water as soon as possible.With the discussion of the mechanism of the cormorant’s water-surface takeoff and the relevant characteristics of biology,the impetus and attitude adjustment strategies of the aerial–aquatic vehicle in the takeoff process are illustrated. 展开更多
关键词 aerial-aquatic vehicle Cormorant’s takeoff Quantitative hydrodynamic analysis Computational Fluid Dynamics(CFD) Multiphase flow Bionic prototype verification
在线阅读 下载PDF
Bioinspiration review of Aquatic Unmanned Aerial Vehicle(AquaUAV) 被引量:3
5
作者 Xinyang Wang Jjiawei Zhao +3 位作者 Xuan Pei Tianmiao Wang Taogang Hou Xingbang Yang 《Biomimetic Intelligence & Robotics》 EI 2024年第2期1-11,共11页
The performance of Aquatic Unmanned Aerial Vehicle(AquaUAV)has always been limited so far and far from practical applications,due to insufficient propulsion,large-resistance structure etc.Aerial-aquatic amphibians in ... The performance of Aquatic Unmanned Aerial Vehicle(AquaUAV)has always been limited so far and far from practical applications,due to insufficient propulsion,large-resistance structure etc.Aerial-aquatic amphibians in nature may facilitate the development of AquaUAV since their excellent amphibious locomotion capabilities evolved under long-term natural selection.This article will take four typical aerial-aquatic amphibians as representatives,i.e.,gannet,cormorant,flying fish and flying squid.We summarized the multi-mode locomotion process of common aerial-aquatic amphibians and the evolutionary trade-offs they have made to adapt to amphibious environments.The four typical propulsion mechanisms were investigated,which may further inspire the propulsion design of the AquaUAV.And their morphological models could guide the layout optimization.Finally,we reviewed the state of art in AquaUAV to validate the potential value of our bioinspiration,and discussed the futureprospects. 展开更多
关键词 aerial-aquatic amphibians Multi-mode locomotion trade-offs Propulsion mechanism Morphological design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部